Lĩnh vực xây dựng đang phát triển nhanh chóng trong thập kỷ qua. Các hoạt động này đòi hỏi một lượng lớn cốt liệu để xây dựng mới và cũng tạo ra một lượng lớn chất thải từ việc phá dỡ các công trình cũ. Để khắc phục điều này, bê tông cốt liệu tái chế (RAC), trong đó cốt liệu tự nhiên được thay thế bằng cốt liệu bê tông tái chế, hiện đang là một hướng nghiên cứu tiềm năng và giúp bảo tồn tài nguyên thiên nhiên, giảm thiểu tác động đến môi trường. Tuy nhiên, việc tối ưu hóa hỗn hợp RAC do thành phần khác nhau của cốt liệu tái chế và việc ước tính cường độ nén đòi hỏi các kỹ thuật mới và phức tạp. Trong nghiên cứu này, mô hình mạng nơ ron nhân tạo với thuật toán Conjugate gradient được đề xuất để dự đoán cường độ nén của RAC. Cơ sở dữ liệu RAC trong nghiên cứu này gồm 650 kết quả thí nghiệm được tổng hợp từ 69 nghiên cứu thử nghiệm. Hiệu suất của mô hình ANN được đánh giá bằng cách sử dụng các tiêu chí thống kê, cụ thể là hệ số tương quan (R), sai số toàn phương trung bình (RMSE), sai số tuyệt đối trung bình (MAE) và sai số phần trăm tuyệt đối trung bình (MAPE). Kết quả cho thấy mô hình ANN đề xuất là một công cụ dự đoán hợp lý và hữu ích cho các kỹ sư, giúp tiết kiệm thời gian, giảm thiểu các thí nghiệm tốn kém.