Lọc theo danh mục
liên kết website
Lượt truy cập
- Công bố khoa học và công nghệ Việt Nam
Công nghệ gen; nhân dòng vật nuôi;
Huỳnh Kỳ(3), Trần Đặng Thành Phát, Nguyễn Thị Kim Phụng, Văn Quốc Giang(1), Nguyễn Văn Mạnh, Trần In Đô(2), Nguyễn Thành Tâm, Nguyễn Châu Thanh Tùng, Nguyễn Lộc Hiền, Huỳnh Như Điền
Các biến thể gene OsTZF1 liên quan đến khả năng chịu mặn ở giống lúa Đốc Phụng bằng phương pháp giải trình tự bộ gene
Variation of OsTZF1 gene related to salt tolerance in Doc Phung rice variety using whole geneome sequencing
Khoa học (Đại học Cần Thơ)
2021
4
159-168
1859-2333
TTKHCNQG, CVv 403
- [1] Yuan, J., Wang, X., Zhao, Y., Khan, N. U., Zhao, Z., Zhang, Y., ... & Li, Z. (2020), Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS,Scientific reports, 10(1), 1-9
- [2] Wang, P., Xiong, Y., Gong, R., Yang, Y., Fan, K., & Yu, S. (2019), A key variant in the cis-regulatory element of flowering gene Ghd8 associated with cold tolerance in rice,Scientific reports, 9(1), 1-14
- [3] Wang, J., Zhu, J., Zhang, Y., Fan, F., Li, W., Wang, F., ... & Yang, J. (2018), Comparative transcriptome analysis reveals molecular response to salinity stress of salt-tolerant and sensitive genotypes of indica rice at seedling stage,Scientific reports, 8(1), 1-13
- [4] Wakeley, J. (1996), The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance,Trends in ecology & evolution, 11(4), 158-162
- [5] Tin, H. Q., Loi, N. H., Labarosa, S. J. E., McNally, K. L., McCouch, S., & Kilian, B. (2021), Phenotypic response of farmer‐se-lected CWR‐ derived rice lines to salt stress in the Mekong Delta,Crop Science, 61(1), 201-218
- [6] Thorvaldsdóttir, H., Robinson, J. T., & Mesirov, J. P. (2013), Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration,Briefings in bioinformatics, 14(2), 178-192
- [7] Tam, N. T. (2019), The geneome constitution of rice resources in the Mekong Delta and their association with salinity stress,(Doctoral dissertation). Hokkaido University
- [8] Subudhi, P. K., Shankar, R., & Jain, M. (2020), Whole geneome sequence analysis of rice geneotypes with contrasting response to salinity stress,Scientific Reports, 10, 21259
- [9] Subbaiyan, G. K., Waters, D. L. E., Katiyar, S. K., Sadananda, A. R., Vaddadi, S., & Henry, R. J. (2012), Geneome-wide DNA polymorphisms in elite indica rice inbreds discovered by wholegeneome sequencing,Plant Biotechnology Journal, 10, 623-634
- [10] Steri, M., Idda, M. L., Whalen, M. B., & Orrù, V. (2018), Genetic variants in mRNA untranslated regions,Wiley Interdisciplinary Reviews: RNA, 9(4), e1474
- [11] Seong, S. Y., Shim, J. S., Bang, S. W., & Kim, J. K. (2020), Overexpression of OsC3H10, a CCCH-zinc finger, improves drought tolerance in rice by regulating stress-related genes,Plants, 9(10), 1298
- [12] Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G., & Mesirov, J. P. (2011), Integrative genomics viewer,Nature biotechnology, 29(1), 24-26
- [13] Rahman, M. A., Thomson, M. J., Shah-E-Alam, M., de Ocampo, M., Egdane, J., & Ismail, A. M. (2016), Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological c-haracterization,Annals of botany, 117(6), 1083-1097
- [14] Phạm Thanh Vũ, Võ Quang Minh, Vương Tuấn Huy và Phan Chí Nguyện (2016), Tác động của mặn và ngập theo kịch bản biến đổi khí hậu đến tiềm năng thích nghi đất đai vùng ven biển Đồng bằng sông Cửu Long,Tạp chí Khoa học Trường Đại học Cần Thơ, Số chuyên đề: Nông nghiệp, 71-83
- [15] Nguyễn Thanh Tường, Nguyễn Tâm Đạo, Võ Công Thành & Nguyễn Bảo Vệ (2011), Tuyển chọn giống lúa cao sản chịu mặn cho vùng lúa – tôm tại tỉnh Bạc Liêu,Tạp chí Nông nghiệp và Phát triển Nông thôn, 12, 30-36
- [16] Naveed, S. A., Zhang, F., Zhang, J., Zheng, T. Q., Meng, L. J., Pang, Y. L., ... & Li, Z. K. (2018), Identification of QTN and candidate genes for salinity tolerance at the germination and seedling stages in rice by genome-wide association analyses,Scientific reports, 8(1), 1-11
- [17] Morton, B. R. (1995), Neighboring base composition and transversion/transition bias in a comparison of rice and maize chloroplast noncoding regions,Proceedings of the National Academy of Sciences, 92(21), 9717-9721
- [18] Morgulis, A., Gertz, E. M., Schäffer, A. A., & Agarwala, R. (2006), A fast and symmetric DUST implementation to mask low-complexity DNA sequences,Journal of Computational Biology, 13(5), 1028-1040
- [19] Menguer, P. K., Sperotto, R. A., & Ricachenevsky, F. K. (2017), A walk on the wild side: Oryza species as source for rice abiotic stress tolerance,Genetics and molecular biology, 40, 238-252
- [20] Lv, Q., Li, W., Sun, Z., Ouyang, N., Jing, X., He, Q., ... & Yuan, D. (2020), Resequencing of 1,143 indica rice accessions reveals important genetic variations and different heterosis patterns,Nature communications, 11(1), 1-10
- [21] Liu, W., Ghouri, F., Yu, H., Li, X., Yu, S., Shahid, M. Q., & Liu, X. (2017), Geneome wide resequencing of newly developed Rice Lines f-rom common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes,PLOS ONE, 12, e0180662
- [22] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... & Durbin, R. (2009), The sequence alignment/map format and SAMtools,Bioinformatics, 25(16), 2078-2079
- [23] Li, H. (2016), Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences,Bioinformatics, 32(14), 2103-2110
- [24] Li, H. (2014), Toward better understanding of artifacts in variant calling f-rom high-coverage samples,Bioinformatics, 30(20), 2843-2851
- [25] Li, H. (2011), A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation f-rom sequencing data,Bioinformatics, 27(21), 2987-2993
- [26] Lakra, N., Kaur, C., Singla-Pareek, S. L., & Pareek, A. (2019), Mapping the ‘early salinity response’triggered proteome adaptation in contrasting rice genotypes using iTRAQ approach,Rice, 12(1), 1-22
- [27] Kreimer, A., Litvin, O., Hao, K., Molony, C., Pe’er, D., & Pe'er, I. (2012), Inference of modules associated to eQTLs,Nucleic acids research, 40(13), e98-e98
- [28] Kim, D., Langmead, B., & Salzberg, S. L. (2015), HISAT: a fast spliced aligner with low memory requirements,Nature methods, 12, 357-360
- [29] Khush, G. S. (1997), Origin, dispersal, cultivation and variation of rice,Springer, Dordrecht
- [30] Keel, B. N., and Snelling, W. M. (2018), Comparison of Burrows-Wheeler TransformBased Mapping Algorithms Used in HighThroughput Whole-Geneome Sequencing: Application to Illumina Data for Livestock Geneomes,Frontiers in genetics, 9, 35-35
- [31] Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S., Kawahara, Y., de la Bastide, M., Hamilton, J. P., Kanamori, H., McCombie, W. R., Ouyang, S., ... & Matsumoto, T. (2013), Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data,Rice, 6(1), 1-10
- [32] Jan, A., Maruyama, K., Todaka, D., Kidokoro, S., Abo, M., Yoshimura, E., Shinozaki, K., Nakashima, K., & Yamaguchi-Shinozaki, K. (2013), OsTZF1, a CCCH-Tandem Zinc Finger Protein, Confers Delayed Senescence and Stress Tolerance in Rice by Regulating Stress-Related Genes,Plant Physiology, 161, 1202-1216
- [33] Jain, M., Moharana, K. C., Shankar, R., Kumari, R., & Garg, R. (2014), Geneomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance,Plant Biotechnology Journal, 12, 253-264
- [34] Jain, M. (2012), Next-generation sequencing technologies for gene expression profiling in plants,Brief Funct Geneomics, 11, 63-70
- [35] Islam, M. Z., Khalequzzaman, M., Prince, M., Siddique, M. A., Rashid, E., Ahmed, M., Pittendrigh, B. R., & Ali, M. P. (2018), Diversity and population structure of red rice germplasm in Bangladesh,PLOS ONE, 13, e0196096
- [36] Huang, X., Lu, T., & Han, B. (2013), Resequencing rice geneomes: an emerging new era of rice geneomics,Trends in genetics: TIG, 29, 225-232
- [37] Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S., & Manolio, T. A. (2009), Potential etiologic and functional implications of geneome-wide association loci for human diseases and traits,Proceedings of the National Academy of Sciences, 106, 9362-9367
- [38] Fuentes, R. R., Chebotarov, D., Duitama, J., Smith, S., De la Hoz, J. F., Mohiyuddin, M., Wing, R. A., McNally, K. L., Tatarinova, T., Grigoriev, A., Mauleon, R., & Alexandrov, N. (2019), Structural variants in 3000 rice geneomes,Geneome Research, 29, 870-880
- [39] Doyle, J. J., and Doyle, J. J. (1990), Isolation of plant DNA f-rom fresh tissue,Focus, 12, 13-15
- [40] Chu, J., Mohamadi, H., Warren, R. L., Yang, C., & Birol, I. (2017), Innovations and challenges in detecting long read overlaps: an evaluation of the state-of-the-art,Bioinformatics (Oxford, England), 33, 1261-1270
- [41] Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018), fastp: an ultra-fast all-in-one FASTQ preprocessor,Bioinformatics, 34, i884-i890
- [42] Chen, R., Cheng, Y., Han, S., Van Handel, B., Dong, L., Li, X., & Xie, X. (2017), Whole geneome sequencing and comparative transcriptome analysis of a novel seawater adapted, saltresistant rice cultivar – sea rice 86,BMC Geneomics, 18, 655
- [43] Bolser, D., Staines, D. M., Pritc-hard, E., & Kersey, P. (2016), Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Geneomics Data,In: Edwards, D. (Ed.), Plant Bioinformatics: Methods and Protocols. Springer New York, New York, NY, pp. 115-140
- [44] Batley, J., Barker, G., O'Sullivan, H., Edwards, K. J., & Edwards, D. (2003), Mining for single nucleotide polymorphisms and in-sertions/deletions in maize expressed sequence tag data,Plant physiology, 132, 84-91
- [45] Barreiro, L. B., Laval, G., Quach, H., Patin, E., & Quintana-Murci, L. (2008), Natural se-lection has driven population differentiation in modern humans,Nature Genetics, 40, 340-345
- [46] Barba, M., Czosnek, H., & Hadidi, A. (2014), Historical perspective, development and applications of next-geneeration sequencing in plant virology,Viruses, 6(1), 106-136
