Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,397,215
  • Công bố khoa học và công nghệ Việt Nam

68

Cây công nghiệp và cây thuốc

Lê Thị Diễm, Trương Hoài Phong, Hoàng Thanh Tùng(1), Hoàng Đắc Khải, Vũ Quốc Luận, Đỗ Mạnh Cường(2), Nguyễn Thị Như Mai(4), Trịnh Thị Hương, Bùi Văn Thế Vinh, Trần Quế, Dương Tấn Nhựt(3)

So sánh hiệu quả phát sinh phôi vô tính từ các nguồn mẫu in vitro của cây sâm Ngọc Linh (Panax vietnamensis Ha et Grushv.)

Comparison of somatic embryogenesis efficiency f-rom in vitro explant sources of Ngoc Linh ginseng (Panax vietnamensis Ha et Grushv.)

Khoa học & công nghệ Việt Nam

2023

09B

51 - 57

1859-4794

Nghiên cứu khảo sát khả năng phát sinh phôi vô tính từ nhiều nguồn vật liệu khác nhau của cây sâm Ngọc Linh (Panax vietnamensis Ha et Grushv.) được thực hiện nhằm chọn được vật liệu thích hợp cho sự phát sinh phôi trong nuôi cấy in vitro. Trong nghiên cứu này, các mẫu in vitro từ mảnh lá, cuống lá, rễ và các phôi rời ở dạng hình cầu, hình tim và có lá mầm được khảo sát trên môi trường MS bổ sung riêng lẻ hoặc kết hợp 2,4-D (2,4-dichlorophenoxyacetic acid: 0,2, 0,5 và 0,7 mg/l) và TDZ (Thidiazuron: 0,1, 0,3 và 0,5 mg/l). Kết quả cho thấy, tất cả các vật liệu thử nghiệm đều cho phát sinh phôi sau 6 tuần nuôi cấy (100%). Số phôi trung bình trên mẫu mảnh lá (51,00 phôi) trên môi trường tối ưu cao hơn đáng kể so với mẫu cuống lá (29,67 phôi) và mẫu rễ (18,00 phôi). Mẫu phôi hình cầu là nguồn vật liệu thích hợp nhất cho sự phát sinh phôi (68,33 phôi/mẫu) so với các nguồn mẫu cấy khác. Môi trường nuôi cấy có sự kết hợp của 2,4-D và TDZ tăng khả năng tạo phôi thứ cấp ở mẫu phôi hình cầu, kết quả đạt cao nhất tại nồng độ 0,7 mg/l 2,4-D kết hợp với 0,1 mg/l TDZ trong môi trường chứa 0,5 mg/l NAA (1-Naphthaleneacetic acid) (73,33 phôi/mẫu).

This study on the efficiency of embryogenesis f-rom various explant sources of Ngoc Linh ginseng (Panax vietnamensis Ha et Grushv.) was conducted to se-lect the appropriate materials and optimise embryogenesis in vitro. In this study, in vitro explants f-rom leaf fragments, petioles, roots, and embryos (globular, heart-shaped, and cotyledon) were cultured on MS medium supplemented individually or in combination with 2,4-D (2,4-dichlorophenoxyacetic acid: 0.2, 0.5, and 0.7 mg/l) and TDZ (Thidiazuron: 0.1, 0.3, and 0.5 mg/l). The results showed that all explants had embryogenesis after 6 weeks of culture (100%). The average number of embryos per leaf fragment (51.00 embryos) on the optimal medium was significantly higher than that of petioles (29.67 embryos) and root samples (18.00 embryos). Interestingly, the globular embryo explant was noted as the most suitable material source for embryogenesis (68.33 embryos/sample). The culture medium with the combination of 2,4-D and TDZ increased the ability to cre-ate secondary embryos in globular embryos, the highest result was achieved at the concentration of 0.7 mg/l 2,4- D combined with 0.1 mg/l TDZ in the medium containing 0.5 mg/l NAA - 1-Naphthaleneacetic acid (73.33 embryos/sample).

TTKHCNQG, CVv 8

  • [1] S. Nunes; Li. Marum; N. Farinha (2018), Somatic embryogenesis of hybrid Pinus elliottii var. elliottii × P. caribaea var. hondurensis and ploidy assessment of somatic plants.,Plant Cell, Tissue Organ Culture, 132, pp.71-84, DOI: 10.1007/s11240-017-1311-7.
  • [2] X. Yang; X. Yang; T. Guo (2018), High-efficiency somatic embryogenesis f-rom seedlings of Koelreuteria paniculata Laxm.,Forests, 9(12), DOI: 10.3390/f9120769.
  • [3] C. Ahn; A.R. Tull; P.M. Montello (2017), A clonal propagation system for Atlantic white cedar (Chamaecyparis thyoides) via somatic embryogenesis without the use of plant growth regulators,,Plant Cell, Tissue Organ Culture, 130, pp.91-101, DOI: 10.1007/s11240-017-1206-7.
  • [4] G.S. Pullman; K. Bucalo (2014), Pine somatic embryogenesis: analyses of seed tissue and medium to improve protocol development.,New Forests, 45, pp.353-377.
  • [5] K. Haliloglu; M. Aydin (2016), Efficient regeneration system f-rom wheat leaf base segments.,SpringerPlus, 5(1), pp.326-330, DOI: 10.1186/ s40064-016-3689-9.
  • [6] S. Bhaskaran; R.H. Smith (1990), Regeneration in cereal tissue culture: A review.,Crop Science, 30(6), pp.1328-1337, DOI: 10.2135/ cropsci1990.0011183X003000060034x.
  • [7] M.G. Prakash; K. Gurumurthi (2010), Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis.,Plant Cell, Tissue Organ Culture, 100, pp.13-20, DOI: 10.1007/s11240-009-9611-1.
  • [8] Y.E. Choi; D.C. Yang; E.S. Yoon (1999), High-efficiency plant production via direct somatic single embryogenesis f-rom preplasmolysed cotyledons of Panax ginseng and possible dormancy of somatic embryos.,Plant Cell Rep., 18, pp.493-499, DOI: 10.1007/s002990050610.
  • [9] S. Arya; I.D. Arya; T. Eriksson (1993), Rapid multiplication of adventitious somatic embryos of Panax ginseng.,Plant Cell, Tissue Organ Culture, 34, pp.157-162.
  • [10] W. Chang; Y. Hsing (1980), Plant regeneration through somatic embryogenesis in root-derived callus of ginseng (Panax ginseng CA Meyer).,Theor. Appl. Genet., 57(3), pp.133-135, DOI: 10.1007/BF00253888.
  • [11] H.H. Chung; J.T. Chen; W.C. Chang (2005), Cytokinins induce direc somatic embryogenesis of Dendrobium chiengmai pink and subsequent plant regeneration.,In Vitro Cell. Dev. Biol. Plant, 41, pp.765-769, DOI: 10.1079/ IVP2005702.
  • [12] R. Gill; P.K. Saxena (1992), Direct somatic embryogenesis and regeneration of plants f-rom seedling explants of peanut (Arachis hypogaea): Promotive role of thidiazuron.,Can. J. Bot., 70(6), pp.1186-1192, DOI: 10.1139/ b92-147.
  • [13] K.A. Malik; P.K. Saxena (1992), Regeneration in Phaseolus vulgaris L.: High-frequency induction of direct shoot formation in intact seedlings by N 6-benzylaminopurine and thidiazuron.,Planta, 186(3), pp.384-389, DOI: 10.1007/BF00195319.
  • [14] M. Zhang; A. Wang; M. Qin (2021), Direct and Indirect somatic embryogenesis induction in Camellia oleifera Abel.,Front. Plant Sci., 12, DOI: 10.3389/fpls.2021.644389.
  • [15] H.J. Gladfelter; J. Johnston; H.D. Wilde (2021), Somatic embryogenesis and cryopreservation of Stewartia species.,Plant Cell, Tissue Organ Culture, 144, pp.211-221, DOI: 10.1007/s11240-020-01834-1.
  • [16] T.H. Przybył; E. Ratajczak; A. Obarska (2020), Different roles of auxins in somatic embryogenesis efficiency in two Picea species.,Int. J. Mol. Sci., 21(9), DOI: 10.3390/ijms21093394.
  • [17] S. Avci; E. Can (2006), Efficient somatic embryogenesis f-rom immature inflorescences of Dallisgrass (Paspalum dilatatum Poir.).,Prop. Orn. Plants, 6(3), pp.134-139.
  • [18] M. Umehara; H. Kamada (2005), Development of the embryo proper and the suspensor during plant embryogenesis.,Plant Biotechnology, 22(4), pp.253-260, DOI: 10.5511/plantbiotechnology.22.253.
  • [19] C.M. Liu; Z.H. Xu; N. Chua (1993), Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis.,Plant Cell, 5(6), pp.621-630, DOI: 10.1105/tpc.5.6.621.
  • [20] N. Sabooni; A. Shekafandeh (2017), Somatic embryogenesis and plant regeneration of blackberry using the thin cell layer technique.,Plant Cell, Tissue Organ Culture, 130, pp.313-321, DOI: 10.1007/s11240-017-1225-4.
  • [21] T. Isah (2016), Induction of somatic embryogenesis in woody plants.,Acta Physiol. Plant., 38(5), DOI: 10.1007/s11738-016-2134-6.
  • [22] I. Żur; E. Dubas; M. Krzewska (2015), Hormonal requirements for effective induction of microspore embryogenesis in triticale (× Triticosecale Wittm.) anther cultures.,Plant Cell Rep., 34(1), pp.47-62, DOI: 10.1007/s00299- 014-1686-4.
  • [23] D.B. Duncan (1995), Multiple range and multiple F tests.,J. Biometrics, 11(1), pp.1-42, DOI: 10.2307/3001478.
  • [24] R.L. Peterson; C.A. Peterson; L.H. Melville (2008), Teaching plant anatomy through creative laboratory exercises.,NRC Press, 104(1), 164pp, DOI: 10.1093/aob/mcp112.
  • [25] V.T. Hien; N.P. Huy; B.V.T. Vinh (2016), Somatic embryogenesis f-rom leaf transverse thin cell layer derived-callus of Vietnamese ginseng (Panax vietnamensis Ha et Grushv.).,Vietnam J. Biotechnol., 14, pp.63-73, DOI: 10.15625/1811-4989/14/1/9294.
  • [26] B.V.T. Vinh; V.T. Thuy; T.T. Hien (2014), Factors effecting somatic embryogenesis of Ngoc Linh Ginseng (Panax vietnamensis Ha et Grushv.).,Vietnam J. Sci. Technol., 1, pp.73-84.
  • [27] V.T. Hien; V.M. Luan; N.P. Huy (2014), Direct somatic embryogenesis f-rom leaf, petiole and rhizome explant of Panax vietnamensis Ha et Grushv.,Academia J. Biol., 36, pp.277-282, DOI: 10.15625/0866-7160/ v36n1se.4408.
  • [28] D.T. Nhut; B.V.T. Vinh; T.T. Hien (2012), Effects of spermidine, proline and carbohydrate sources on somatic embryogenesis f-rom main root transverse thin cell layers of Vietnamese ginseng (Panax vietnamensis Ha et. Grushv.).,Afr. J. Biotechnol., 11(5), pp.1084-1091, DOI: 10.5897/AJB11.3186.
  • [29] D.T. Nhut; N.P. Huy; H.X. Chien (2012), In vitro culture of petiole longitudinal thin cell layer explants of Vietnamese ginseng (Panax vietnamensis Ha et Grushv.) and preliminary analysis of saponin content.,Int. J. Appl. Biol. Pharm., 3(3), pp.178-190.
  • [30] M.T. Martinez; M.C. San Jose; A.M. Vieitez (2017), Propagation of mature Quercus ilex L. (holm oak) trees by somatic embryogenesis.,Plant Cell, Tissue Organ Culture, 131, pp.321-333, DOI: 10.1007/s11240-017-1286-4.
  • [31] H.A. Mendez-Hernandez; M.L. Rodriguez; R.N. Avilez-Montalvo (2019), Signaling overview of plant somatic embryogenesis.,Front. Plant Sci., 10, DOI: 10.3389/fpls.2019.00077.
  • [32] Y. Yang; N. Wang; S. Zhao (2020), Functional c-haracterization of a WRKY family gene involved in somatic embryogenesis in Panax ginseng.,Protoplasma, 257(2), pp.449-458, DOI: 10.1007/s00709-019-01455-2.
  • [33] J. Yan; P. Peng; G. Duan (2021), Multiple analyses of various factors affecting the plantlet regeneration of Picea mongolica (H. Q. Wu) W.D. Xu f-rom somatic embryos.,Sci. Rep., 11(1), DOI: 10.1038/s41598-021-83948-w.
  • [34] A.M. Wojcik; B. Wojcikowska; M.D. Gaj (2020), Current perspectives on the auxin-mediated genetic network that controls the induction of somatic embryogenesis in plants.,Int. J. Mol. Sci., 21(4), DOI: 10.3390/ijms21041333.
  • [35] R.J. Rose; Y. Song (2017), Somatic embryogenesis.,Encyclopedia of Applied Plant Sciences, Second Edition, Academic Press, pp.474-479.
  • [36] M.D. Bogdanovic; K.B. Cukovic; A.R. Subotic (2021), Secondary somatic embryogenesis in Centaurium erythraea Rafn.,Plants, 10(2), DOI: 10.3390/plants10020199.
  • [37] Y. Guan; S.G. Li; X.F. Fan (2016), Application of somatic embryogenesis in woody plants.,
  • [38] Y. Bao; G. Liu; X. Shi (2012), Primary and repetitive secondary somatic embryogenesis in Rosa hybrida ‘Samantha’.,Plant Cell, Tissue Organ Culture, 109, pp.411-418, DOI: 10.1007/s11240-011-0105-6.
  • [39] P.D. Smitha; K.R. Binoy; S.N. Ashalatha (2020), Enhanced secondary somatic embryogenesis in suspension culture of four diploid banana cultivars f-rom Kerala.,Int. J. Fruit Sci., 20(2), pp.617-626, DOI: 10.1080/15538362.2020.1753138.
  • [40] H.F. Sakhanokho; E.M. Babiker; B.J. Smith (2019), High-frequency somatic embryogenesis, nuclear DNA estimation of milkweed species (Asclepias latifolia, A. speciosa, and A. subverticillata), and genome size stability of regenerants.,Plant Cell, Tissue Organ Culture, 137(1), pp.149-156, DOI: 10.1007/s11240-019-01559-w.
  • [41] K.H. Neumann (2000), Some Studies on Somatic Embryogenesis: A Tool in Plant Biotechnology.,
  • [42] G. Raza; M.B. Singh; P.L. Bhalla (2020), Somatic embryogenesis and plant regeneration f-rom commercial soybean cultivars.,Plants (Basel), 9(1), DOI: 10.3390/plants9010038.
  • [43] C. Stasolla; E.C. Yeung (2003), Recent advances in conifer somatic embryogenesis: Improving somatic embryo quality.,Plant Cell, Tissue Organ Culture, 74, pp.15-35 , DOI: 10.1023/A:1023345803336.
  • [44] N.T. Huong; K. Matsumoto; R. Kasai (1998), In vitro antioxidant activity of Vietnamese ginseng saponin and its components.,Biol. Pharm. Bull., 21(9), pp.978-981, DOI: 10.1248/bpb.21.978.