



- Công bố khoa học và công nghệ Việt Nam
Viễn thám
Phạm Văn Mạnh, Nguyễn Ngọc Thạch(1), Nguyễn Như Hùng, Lại Tuấn Anh
Ước tính độ nhiễm mặn của đất từ dữ liệu ảnh viễn thám khu vực ven biển tỉnh Nghệ An
Estimating soil salinity from remote sensing data in coastal districts of Nghe An province
Tạp chí Khoa học Kỹ thuật Thủy lợi & Môi trường
2019
66
114-122
1859-3941
TTKHCNQG, CVt 64
- [1] Yu, R.; Liu, T.; Xu, Y.; Zhu, C.; Zhang, Q.; Qu, Z.; Liu, X.; Li, C. (2010), Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China,Agr.Wat. Man. 97, 1952– 1960, http://dx.doi.org/10.1016/j.agwat.2010.03.009.
- [2] (2011), A Language and Environment for Statistical Computing. Sidike, A., Zhao, S., Wen, Y., 2014. Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra,Int. J. Appl. Earth Obs. Geoinf. 26, 156–175, http://dx.doi.org/10.1016/j.jag.2013.06.002.
- [3] Pons, X.; Pesquer, L.; Cristóbal, J.; González-Guerrero, O. (2014), Automatic and improved radiometric correction of Landsat imagery using reference values f-rom MODIS surface reflectance images.,Int. J. Appl. Earth Obs. Geoinf. 33, 243–254, http://dx.doi.org/10.1016/j.jag.2014.06.002
- [4] Metternicht, G.I.; Zinck, J.A. (2009), Remote Sensing of Soil Salinization: Impact on Land Management,CRC Press, Boca Raton, FL https://www.crcpress.com/9781420065022.
- [5] Manh Van Pham; Tam Minh Pham; Quan Vu Viet Du; Quang-Thanh Bui; Anh Van Tran; Hai Minh Pham; Thach Ngoc Nguyen (2019), Integrating Sentinel-1A SAR data and GIS to estimate aboveground biomass and carbon accumulation for tropical forest types in Thuan Chau district, Vietnam,Remote Sensing Applications: Society and Environment, https://doi.org/10.1016/j.rsase.2019.03.003, ISSN: 2352-9385
- [6] Li, D. J.; Chun, W. M.; Tiyip, T. (2011), Study on soil salinization information in arid region using remote sensing technique,Agricultural Science in China, 10(3), 404–411
- [7] Lhissou, R.; El Harti, A.; Chokmani, K. (2014), Mapping soil salinity in irrigated land using optical remote sensing data,Eurasian J. Soil Sci. 3, 82–88, http://dx.doi. org/10.18393/ejss.84540.
- [8] Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. (1999), Bayesian Model Averaging: A Tutorial 36,
- [9] Hamzeh, S.; Naseri, A.A.; AlaviPanah, S.K.; Mojaradi, B.; Bartholomeus, H.M.; Clevers, J.G.P.W.; Behzad, M. (2013), Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices,Int. J. Appl. Earth Obs. Geoinf. 21, 282–290, http://dx.doi.org/10.1016/j.jag.2012.07.002.
- [10] FAO (2005), Management of irrigation-induced salt affected soils.,Rome (Italy). CISEAU/FAO/IPTRID. ftp://ftp.fao.org/agl/ agll/docs/salinity_brochure_eng.pdf
- [11] Barbouchi, M.; Abdelfattah, R.; Chokmani, K.; Ben Aissa, N.; Lhissou, R.; El Harti, A. (2015), Soil salinity c-haracterization using polarimetric InSAR coherence: case studies in Tunisia and Morocco,IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 8, 3823–3832, http://dx.doi.org/10.1109/jstars.2014.2333535.
- [12] Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. (2013), C-haracterizing soil salinity in irrigated agriculture using a remote sensing approach,Phys. Chem. Earth Part A/B/C. 55–57, 43– 52, http://dx.doi.org/10.1016/j.pce.2010.12.004.