Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  21,940,277
  • Công bố khoa học và công nghệ Việt Nam

Di truyền học người

Vũ Phương Nhung, Nguyễn Đăng Tôn(1), Nông Văn Hải, Nguyễn Hải Hà

Đa dạng di truyền một số gen dược học

Tạp chí Công nghệ Sinh học - Viện Khoa học và Công nghệ Việt Nam

2020

3

393-416

1811-4989

Di truyền là yếu tố đóng vai trò quan trọng nhất góp phần tạo ra sự khác biệt trong đáp ứng thuốc cá nhân. Đa dạng di truyền các gen dược học có thể dẫn đến kết quả điều trị không mong muốn hoặc thậm chí gặp phải các phản ứng có hại của thuốc. Các gen dược học mã hóa cho các protein thuộc 3 nhóm chức năng chính enzyme chuyển hóa thuốc, protein vận chuyển thuốc và các thụ thể là đích tác dụng của thuốc. Các biến thể di truyền của các gen mã hóa cho các enzyme chuyển hóa thuốc pha I (CYP450), pha II (GSTs, UGT, TPMT) và các protein vận chuyển (ABC, SLCO) đã được nghiên cứu rộng rãi ở nhiều quần thể người, phần lớn các biến thể ở dạng SNPs. Ngoài ra, ảnh hưởng của một số biến thể phổ biến đến đáp ứng thuốc cũng đã được làm rõ. Mặt khác, thông tin về các biến thể thuộc nhóm gen mã hóa cho các thụ thể là đích tác dụng của thuốc cũng như ảnh hưởng sinh lý của các biến thể này vẫn còn rất hạn chế. Trong những năm gần đây, sự phát triển của công nghệ giải trình tự gen thế hệ mới cùng với các công cụ tin sinh học đã thúc đẩy mạnh mẽ lĩnh vực nghiên cứu di truyền dược học với khả năng phát hiện các biến thể mới và hiếm. Dữ liệu về biến thể di truyền của các gen dược học là những thông tin quý báu trong việc xác định kiểu hình chuyển hóa thuốc, tạo tiền đề trong tối ưu liều thuốc và dần tiến tới nền y học cá thể hóa trong tương lai.

TTKHCNQG, CVv 262

  • [1] Zhou ZW, Chen XW, Sneed KB, Yang YX, Zhang X, He ZX, Chow K, Yang T, Duan W, Zhou SF (2015), Clinical association between pharmacogenomics and adverse drug reactions.,Drugs 75(6): 589-631.
  • [2] Zhou Y, Fujikura K, Mkrtchian S, Lauschke VM (2018), Computational Methods for the Pharmacogenetic Interpretation of Next Generation Sequencing Data.,Front Pharmacol 9: 1437.
  • [3] Zhou SF, Liu JP, Chowbay B (2009), Polymorphism of human cytochrome P450 enzymes and its clinical impact.,Drug Metab Rev 41(2): 89-295.
  • [4] Zanger UM, Raimundo S, Eichelbaum M (2004), Cytochrome P450 2D6: overview and up-date on pharmacology, genetics, biochemistry.,Naunyn Schmiedebergs Arch Pharmacol 369(1): 23-37.
  • [5] Yang W, Wu G, Broeckel U, Smith CA, Turner V, Haidar CE, Wang S, Carter R, Karol SE, Neale G, Crews KR, Yang JJ, Mullighan CG, Downing JR, Evans WE, Relling MV (2016), Comparison of genome sequencing and clinical genotyping for pharmacogenes.,Clin Pharmacol Ther 100(4): 380- 388.
  • [6] Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR (2004), Genetic variability in CYP3A5 and its possible consequences.,Pharmacogenomics 5(3): 243-272.
  • [7] Wuttke H, Rau T, Heide R, Bergmann K, Bohm M, Weil J, Werner D, Eschenhagen T (2002), Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprololassociated adverse effects.,Clin Pharmacol Ther 72(4): 429-437.
  • [8] Weinshilboum R (2003), Inheritance and drug response.,N Engl J Med 348(6): 529-537.
  • [9] Wang D, Sun X, Gong Y, Gawronski BE, Langaee TY, Shahin MH, Khalifa SI, Johnson JA (2012), CYP2C9 promoter variable number tandem repeat polymorphism regulates mRNA expression in human livers.,Drug Metab Dispos 40(5): 884-891.
  • [10] Sosa-Macias M, Lazalde-Ramos BP, GalavizHernandez C, Rangel-Villalobos H, Salazar-Flores J, Martinez-Sevilla VM, Martinez-Fierro ML, Dorado P, Wong ML, Licinio J, A LL (2013), Influence of admixture components on CYP2C9*2 allele frequency in eight indigenous populations f-rom Northwest Mexico.,Pharmacogenomics J 13(6): 567- 572.
  • [11] Sorensen LB, Sorensen RN, Miners JO, Somogyi AA, Grgurinovich N, Birkett DJ (2003), Polymorphic hydroxylation of perhexiline in vitro.,Br J Clin Pharmacol 55(6): 635-638.
  • [12] Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Meneveau N, Steg PG, Ferrieres J, Danchin N, Becquemont L, French Registry of Acute STE, Non STEMII (2009), Genetic determinants of response to clopidogrel and cardiovascular events.,N Engl J Med 360(4): 363-375.
  • [13] Shoshi A, Muller U, Shoshi A, Ogultarhan V, Hofestadt R (2017), KALIS - An eHealth System for Biomedical Risk Analysis of Drugs.,Stud Health Technol Inform 236: 128-135
  • [14] Scott SA, Sangkuhl K, Shuldiner AR, Hulot JS, Thorn CF, Altman RB, Klein TE (2012), PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19.,Pharmacogenet Genomics 22(2): 159-165.
  • [15] Sanford JC, Guo Y, Sadee W, Wang D (2013), Regulatory polymorphisms in CYP2C19 affecting hepatic expression.,Drug Metabol Drug Interact 28(1): 23-30.
  • [16] Sa ACC, Sadee W, Johnson JA (2018), Whole Transcriptome Profiling: An RNA-Seq Primer and Implications for Pharmacogenomics Research.,Clin Transl Sci 11(2): 153-161.
  • [17] Rogan PK, Svojanovsky S, Leeder JS (2003), Information theory-based analysis of CYP2C19, CYP2D6 and CYP3A5 splicing mutations.,Pharmacogenetics 13(4): 207-218.
  • [18] Rieck M, Schumacher-Schuh AF, Altmann V, Callegari-Jacques SM, Rieder CRM, Hutz MH (2018), Association between DRD2 and DRD3 gene polymorphisms and gastrointestinal symptoms induced by levodopa therapy in Parkinson's disease.,Pharmacogenomics J 18(1): 196-200.
  • [19] Reynolds KK, Pierce DL, Weitendorf F, Linder MW (2017), Avoidable drug-gene conflicts and polypharmacy interactions in patients participating in a personalized medicine program.,Per Med 14(3): 221-233.
  • [20] Relling MV ,Klein TE (2011), CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network.,Clin Pharmacol Ther 89(3): 464-467.
  • [21] Relling MV, Schwab M, Whirl-Carrillo M, SuarezKurtz G, Pui CH, Stein CM, Moyer AM, Evans WE, Klein TE, Antillon-Klussmann FG, Caudle KE, Kato M, Yeoh AEJ, Schmiegelow K, Yang JJ (2019), Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Up-date.,Clin Pharmacol Ther 105(5): 1095-1105.
  • [22] Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S (2013), Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy.,PLoS One 8(12): e82562.
  • [23] Piacentini S, Polimanti R, Porreca F, MartinezLabarga C, De Stefano GF, Fuciarelli M (2011), GSTT1 and GSTM1 gene polymorphisms in European and African populations.,Mol Biol Rep 38(2): 1225-1230.
  • [24] Perera MA, Gamazon E, Cavallari LH, Patel SR, Poindexter S, Kittles RA, Nicolae D, Cox NJ (2011), The missing association: sequencing-based discovery of novel SNPs in VKORC1 and CYP2C9 that affect warfarin dose in African Americans.,Clin Pharmacol Ther 89(3): 408-415.
  • [25] Pereira NL, Geske JB, Mayr M, Shah SH, Rihal CS (2016), Pharmacogenetics of Clopidogrel: An Unresolved Issue.,Circ Cardiovasc Genet 9(2): 185- 188.
  • [26] Passey C, Birnbaum AK, Brundage RC, Oetting WS, Israni AK, Jacobson PA (2011), Dosing equation for tacrolimus using genetic variants and clinical factors.,Br J Clin Pharmacol 72(6): 948-957.
  • [27] Osanlou O, Pirmohamed M, Daly AK (2018), Pharmacogenetics of Adverse Drug Reactions.,Adv Pharmacol 83: 155-190.
  • [28] Niemi M, Pasanen MK, Neuvonen PJ (2011), Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake.,Pharmacol Rev 63(1): 157-181.
  • [29] Myrand SP, Sekiguchi K, Man MZ, Lin X, Tzeng RY, Teng CH, Hee B, Garrett M, Kikkawa H, Lin CY, Eddy SM, Dostalik J, Mount J, Azuma J, Fujio Y, Jang IJ, Shin SG, Bleavins MR, Williams JA, Paulauskis JD, Wilner KD (2008), Pharmacokinetics/genotype associations for major cytochrome P450 enzymes in native and first- and third-generation Japanese populations: comparison with Korean, Chinese, and Caucasian populations.,Clin Pharmacol Ther 84(3): 347-361.
  • [30] Miao J, Liu R, Li Z (2009), Cytochrome P-450 polymorphisms and response to clopidogrel.,N Engl J Med 360(21): 2250-2251.
  • [31] Merry CR, McMahon S, Forrest ME, Bartels CF, Saiakhova A, Bartel CA, Scacheri PC, Thompson CL, Jackson MW, Harris LN, Khalil AM (2016), Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer.,Oncotarget 7(33): 53230-53244.
  • [32] Meienberg J, Bruggmann R, Oexle K, Matyas G (2016), Clinical sequencing: is WGS the better WES?,Hum Genet 135(3): 359-362.
  • [33] Madadi P, Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder JS, Teitelbaum R, Karaskov T, Aleksa K (2007), Safety of codeine during breastfeeding: fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine.,Can Fam Physician 53(1): 33-35.
  • [34] Lee SJ, Usmani KA, Chanas B, Ghanayem B, Xi T, Hodgson E, Mohrenweiser HW, Goldstein JA (2003), Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups.,Pharmacogenetics 13(8): 461-472.
  • [35] Lee CR, Goldstein JA, Pieper JA (2002), Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data.,Pharmacogenetics 12(3): 251-263.
  • [36] Lamba JK, Lin YS, Schuetz EG, Thummel KE (2002), Genetic contribution to variable human CYP3Amediated metabolism.,Adv Drug Deliv Rev 54(10): 1271-1294.
  • [37] Kramer MA, Rettie AE, Rieder MJ, Cabacungan ET, Hines RN (2008), Novel CYP2C9 promoter variants and assessment of their impact on gene expression.,Mol Pharmacol 73(6): 1751-1760
  • [38] Kirchheiner J, Schmidt H, Tzvetkov M, Keulen JT, Lotsch J, Roots I, Brockmoller J (2007), Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication.,Pharmacogenomics J 7(4): 257-265.
  • [39] Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, Brockmoller J (2004), Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response.,Mol Psychiatry 9(5): 442-473.
  • [40] Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA (2001), Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin.,Pharmacogenetics 11(9): 803- 808.
  • [41] Kawanishi C, Lundgren S, Agren H, Bertilsson L (2004), Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse.,A pilot study. Eur J Clin Pharmacol 59(11): 803-807.
  • [42] Katara P ,Yadav A (2019), Pharmacogenes (PGxgenes): Current understanding and future directions.,Gene 718: 144050.
  • [43] Isvoran A, Louet M, Vladoiu DL, Craciun D, Loriot MA, Villoutreix BO, Miteva MA (2017), Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism.,Drug Discov Today 22(2): 366-376.
  • [44] Imai J, Ieiri I, Mamiya K, Miyahara S, Furuumi H, Nanba E, Yamane M, Fukumaki Y, Ninomiya H, Tashiro N, Otsubo K, Higuchi S (2000), Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus.,Pharmacogenetics 10(1): 85-89
  • [45] Hulot JS, Collet JP, Silvain J, Pena A, BellemainAppaix A, Barthelemy O, Cayla G, Beygui F, Montalescot G (2010), Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration: a systematic metaanalysis.,J Am Coll Cardiol 56(2): 134-143.
  • [46] Hsu HL, Woad KJ, Woodfield DG, Helsby NA (2008), A high incidence of polymorphic CYP2C19 variants in archival blood samples f-rom Papua New Guinea.,Hum Genomics 3(1): 17-23.
  • [47] Helsby NA ,Burns KE (2012), Molecular mechanisms of genetic variation and transcriptional regulation of CYP2C19.,Front Genet 3: 206.
  • [48] Niemi M, Pasanen MK, Neuvonen PJ (2011), Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake.,Pharmacol Rev 63(1): 157-181
  • [49] Myrand SP, Sekiguchi K, Man MZ, Lin X, Tzeng RY, Teng CH, Hee B, Garrett M, Kikkawa H, Lin CY, Eddy SM, Dostalik J, Mount J, Azuma J, Fujio Y, Jang IJ, Shin SG, Bleavins MR, Williams JA, Paulauskis JD, Wilner KD (2008), Pharmacokinetics/genotype associations for major cytochrome P450 enzymes in native and first- and third-generation Japanese populations: comparison with Korean, Chinese, and Caucasian populations.,Clin Pharmacol Ther 84(3): 347-361.
  • [50] Miao J, Liu R, Li Z (2009), Cytochrome P-450 polymorphisms and response to clopidogrel.,N Engl J Med 360(21): 2250-2251
  • [51] Merry CR, McMahon S, Forrest ME, Bartels CF, Saiakhova A, Bartel CA, Scacheri PC, Thompson CL, Jackson MW, Harris LN, Khalil AM (2016), Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer.,Oncotarget 7(33): 53230-53244.
  • [52] Meienberg J, Bruggmann R, Oexle K, Matyas G (2016), Clinical sequencing: is WGS the better WES?,Hum Genet 135(3): 359-362.
  • [53] Madadi P, Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder JS, Teitelbaum R, Karaskov T, Aleksa K (2007), Safety of codeine during breastfeeding: fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine.,Can Fam Physician 53(1): 33-35.
  • [54] Lee SJ, Usmani KA, Chanas B, Ghanayem B, Xi T, Hodgson E, Mohrenweiser HW, Goldstein JA (2003), Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups.,Pharmacogenetics 13(8): 461-472.
  • [55] Lee CR, Goldstein JA, Pieper JA (2002), Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data.,Pharmacogenetics 12(3): 251-263.
  • [56] Lamba JK, Lin YS, Schuetz EG, Thummel KE (2002), Genetic contribution to variable human CYP3Amediated metabolism.,Adv Drug Deliv Rev 54(10): 1271-1294.
  • [57] Kramer MA, Rettie AE, Rieder MJ, Cabacungan ET, Hines RN (2008), Novel CYP2C9 promoter variants and assessment of their impact on gene expression.,Mol Pharmacol 73(6): 1751-1760.
  • [58] Kirchheiner J, Schmidt H, Tzvetkov M, Keulen JT, Lotsch J, Roots I, Brockmoller J (2007), Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication.,Pharmacogenomics J 7(4): 257-265.
  • [59] Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, Brockmoller J (2004), Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response.,Mol Psychiatry 9(5): 442-473.
  • [60] Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA (2001), Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin.,Pharmacogenetics 11(9): 803- 808.
  • [61] Kawanishi C, Lundgren S, Agren H, Bertilsson L (2004), Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse.,A pilot study. Eur J Clin Pharmacol 59(11): 803-807.
  • [62] Katara P ,Yadav A (2019), Pharmacogenes (PGxgenes): Current understanding and future directions.,Gene 718: 144050.
  • [63] Jin T, Zhang X, Geng T, Shi X, Wang L, Yuan D, Kang L (2016), Genotype phenotype analysis of CYP2C19 in the Tibetan population and its potential clinical implications in drug therapy.,Mol Med Rep 13(3): 2117-2123.
  • [64] Isvoran A, Louet M, Vladoiu DL, Craciun D, Loriot MA, Villoutreix BO, Miteva MA (2017), Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism.,Drug Discov Today 22(2): 366-37
  • [65] Imai J, Ieiri I, Mamiya K, Miyahara S, Furuumi H, Nanba E, Yamane M, Fukumaki Y, Ninomiya H, Tashiro N, Otsubo K, Higuchi S (2000), Polymorphism of the cytochrome P450 (CYP) 2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus.,Pharmacogenetics 10(1): 85-89.
  • [66] Hulot JS, Collet JP, Silvain J, Pena A, BellemainAppaix A, Barthelemy O, Cayla G, Beygui F, Montalescot G (2010), Cardiovascular risk in clopidogrel-treated patients according to cytochrome P450 2C19*2 loss-of-function allele or proton pump inhibitor coadministration: a systematic metaanalysis.,J Am Coll Cardiol 56(2): 134-143.
  • [67] Hsu HL, Woad KJ, Woodfield DG, Helsby NA (2008), A high incidence of polymorphic CYP2C19 variants in archival blood samples f-rom Papua New Guinea.,Hum Genomics 3(1): 17-23.
  • [68] Helsby NA ,Burns KE (2012), Molecular mechanisms of genetic variation and transcriptional regulation of CYP2C19.,Front Genet 3: 206.
  • [69] Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM (2018), Pharmacogenomics of GPCR Drug Targets.,Cell 172(1-2): 41-54 e19.
  • [70] Han SM, Park J, Lee JH, Lee SS, Kim H, Han H, Kim Y, Yi S, Cho JY, Jang IJ, Lee MG (2017), Targeted Next-Generation Sequencing for Comprehensive Genetic Profiling of Pharmacogenes.,Clin Pharmacol Ther 101(3): 396-405.
  • [71] Gordon AS, Fulton RS, Qin X, Mardis ER, Nickerson DA, Scherer S (2016), PGRNseq: a targeted capture sequencing panel for pharmacogenetic research and implementation.,Pharmacogenet Genomics 26(4): 161-168.
  • [72] Castellano DE, Gonzalez del Alba A, Climent MA, Arranz JA, Gallardo E, Puente J, Bellmunt J, Mellado B, Martinez E, Moreno F, Font A, Robledo M, Rodriguez-Antona C (2011), Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study.,Lancet Oncol 12(12): 1143-1150.
  • [73] Fohner AE, Robinson R, Yracheta J, Dillard DA, Schilling B, Khan B, Hopkins S, Boyer B, Black J, Wiener H, Tiwari HK, Gordon A, Nickerson D, Tsai JM, Farin FM, Thornton TA, Rettie AE, Thummel KE (2015), Variation in genes controlling warfarin disposition and response in American Indian and Alaska Native people: CYP2C9, VKORC1, CYP4F2, CYP4F11, GGCX.,Pharmacogenet Genomics 25(7): 343-353.
  • [74] Egbelakin A, Ferguson MJ, MacGill EA, Lehmann AS, Topletz AR, Quinney SK, Li L, McCammack KC, Hall SD, Renbarger JL (2011), Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia.,Pediatr Blood Cancer 56(3): 361-367
  • [75] Dolfin E, Guani B, Lussiana C, Mari C, Restagno G, Revelli A (2011), FSH-receptor Ala307Thr polymorphism is associated to polycystic ovary syndrome and to a higher responsiveness to exogenous FSH in Italian women.,J Assist Reprod Genet 28(10): 925-930.
  • [76] Dodgen TM, Drogemoller BI, Wright GE, Warnich L, Steffens FE, Cromarty AD, Alessandrini M, Pepper MS (2015), Evaluation of predictive CYP2C19 genotyping assays relative to measured phenotype in a South African cohort.,Pharmacogenomics 16(12): 1343-1354.
  • [77] Desta Z, Zhao X, Shin JG, Flockhart DA (2002), Clinical significance of the cytochrome P450 2C19 genetic polymorphism.,Clin Pharmacokinet 41(12): 913-958.
  • [78] Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP (2007), Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes.,Gastroenterology 132(1): 272-281.
  • [79] Dai DP, Xu RA, Hu LM, Wang SH, Geng PW, Yang JF, Yang LP, Qian JC, Wang ZS, Zhu GH, Zhang XH, Ge RS, Hu GX, Cai JP (2014), CYP2C9 polymorphism analysis in Han Chinese populations: building the largest allele frequency database.,Pharmacogenomics J 14(1): 85-92.
  • [80] Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G (2009), Codeine, ultrarapid-metabolism genotype, and postoperative death.,N Engl J Med 361(8): 827-828.
  • [81] Chou WH, Yan FX, de Leon J, Barnhill J, Rogers T, Cronin M, Pho M, Xiao V, Ryder TB, Liu WW, Teiling C, Wedlund PJ (2000), Extension of a pilot study: impact f-rom the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness.,J Clin Psychopharmacol 20(2): 246-251.
  • [82] Chou FC, Tzeng SJ, Huang JD (2001), Genetic polymorphism of cytochrome P450 3A5 in Chinese.,Drug Metab Dispos 29(9): 1205-1209
  • [83] Chaudhry AS, Urban TJ, Lamba JK, Birnbaum AK, Remmel RP, Subramanian M, Strom S, You JH, Kasperaviciute D, Catarino CB, Radtke RA, Sisodiya SM, Goldstein DB, Schuetz EG (2010), CYP2C9*1B promoter polymorphisms, in linkage with CYP2C19*2, affect phenytoin autoinduction of clearance and maintenance dose.,J Pharmacol Exp Ther 332(2): 599-611.
  • [84] Cacabelos R (2012), World guide for drug use and pharmacogenomics.,EuroEspes Publishing. 2944
  • [85] Cacabelos R, Cacabelos N, Carril JC (2019), The role of pharmacogenomics in adverse drug reactions.,Expert Rev Clin Pharmacol 12(5): 407-442.
  • [86] Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, Wang D, Vinks AA, He Y, Swen JJ, Leeder JS, van Schaik R, Thummel KE, Klein TE, Caudle KE, MacPhee IAM (2015), Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 genotype and tacrolimus dosing.,Clin Pharmacol Ther 98(1): 19- 24.
  • [87] Barysheva VO ,Ketova GG (2015), Pharmacogenetic testing in population of South Ural.,Int J Risk Saf Med 27 Suppl 1: S25-26.
  • [88] Barclay ML, Sawyers SM, Begg EJ, Zhang M, Roberts RL, Kennedy MA, Elliott JM (2003), Correlation of CYP2D6 genotype with perhexiline phenotypic metabolizer status.,Pharmacogenetics 13(10): 627-632.
  • [89] Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015), A global reference for human genetic variation,Nature 526(7571): 68-74.
  • [90] Arbitrio M, Di Martino MT, Scionti F, Agapito G, Guzzi PH, Cannataro M, Tassone P, Tagliaferri P (2016), DMET (Drug metabolism enzymes and transporters): a pharmacogenomic platform for precision medicine.,Oncotarget 7(33): 54028-54050.
  • [91] Amin S, Shah S, Desai M, Shah A, Maheriya KM (2018), An analysis of adverse drug reactions in extremes of age group at tertiary care teaching hospital.,Perspect Clin Res 9(2): 70-75.
  • [92] Amin AM, Sheau Chin L, Azri Mohamed Noor D, Sk Abdul Kader MA, Kah Hay Y, Ibrahim B (2017), The personalization of clopidogrel antiplatelet therapy: The role of integrative pharmacogenetics and pharmacometabolomics.,Cardiol Res Pract 2017: 8062796.