Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  21,940,277
  • Công bố khoa học và công nghệ Việt Nam

Y học nhiệt đới

Vũ Phương Nhung, Trần Thị Bích Ngọc, Nguyễn Đăng Tôn(1), Lê Thị Thu Hiền, Nguyễn Thùy Dương, Nguyễn Quang Thạch, Nông Văn Hải, Nguyễn Hải Hà

Đặc điểm di truyền ở bệnh nhân Covid-19: tình hình nghiên cứu, triển vọng và thách thức trong điều trị Covid-19

Host genetic variation and Covid-19 disease: recent discoveries, prospects and challenges in the treatment of Covid-19

Khoa học & công nghệ Việt Nam

2022

5B

40 - 50

1859-4794

Sự xuất hiện của virus viêm đường hô hấp cấp SARS-CoV-2 đã dẫn đến đại dịch Covid-19 trên toàn thế giới. Xác định các yếu tố nguy cơ khiến bệnh tiến triển nặng cũng như đánh giá mức độ đa dạng về tình trạng bệnh của người nhiễm SARS-CoV-2 đã trở thành một trong những mối quan tâm hàng đầu của các nhà khoa học. Các yếu tố nguy cơ đã biết bao gồm tuổi cao và bệnh nền của bệnh nhân có liên quan đến tình trạng bệnh Covid-19 tiến triển nặng. Ngoài ra, hàng loạt nghiên cứu bệnh/chứng, mô phỏng, docking, dự đoán in silico cũng như đánh giá tương quan toàn hệ gen đã được thực hiện trên nhiều quần thể người khác nhau gần đây đã đạt được một số kết quả quan trọng. Trong đó, các nhóm gen được báo cáo nhiều nhất nằm trong các con đường nhiễm của SARS-CoV-2, phản ứng miễn dịch của cơ thể chủ và gen quy định nhóm máu. Các biến thể di truyền hoặc locus gen có thể đóng vai trò bảo vệ cơ thể, tăng tính mẫn cảm hoặc có liên quan đến tình trạng bệnh nặng hay tử vong đã được phân tích chi tiết. Mặc dù các kết quả tổng hợp đều được rút ra thông qua các phân tích thông kê, mô phỏng, nhưng đây là những thông tin khởi đầu rất có ý nghĩa cho những nghiên cứu sâu về cơ chế bệnh sinh của Covid-19 và y học cá thể hóa trong tương lai.

The emergence of the acute respiratory infection virus SARS-CoV-2 has spread the Covid-19 pandemic over the world. Identifying the risk factors relevant to Covid-19 clinical features, given the striking difference in the clinical symptoms observed f-rom SARS-CoV-2 infected individuals, have become one of the primary concerns among scientists. It has been well-known that host factors such as older age and comorbidities are associated with higher severity. Recently, numerous case/ control studies, simulations, docking, in silico prediction, and genome-wide association study (GWAS) performed in various human populations have achieved many significant results. The reported genetic variants were mostly categorised into the SARS-CoV-2 entry pathway, host immune responses and ABO blood groups. Genetic variants or loci that may play a protective role, increase susceptibility or be associated with severity/ mortality have been analysed in detail. Despite the results being all drawn through statistical analysis and simulation, the knowledge still deserves consideration as supporting materials for in-depth studies on the pathogenesis of Covid-19 and personalised medicine in the forthcoming years.

TTKHCNQG, CVv 8

  • [1] J.L. Casanova; H.C. Su (2020), A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection.,Covid Human Genetic Effort. Cell, 181(6), pp.1194-1199.
  • [2] S. Zhang; J. Wang; G. Cheng (2021), Protease cleavage of RNF20 facilitates coronavirus replication via stabilization of SREBP1.,Proc. Natl. Acad. Sci. U.S.A., 118(37), DOI: 10.1073/pnas.2107108118.
  • [3] J.D. Trimarco (2021), TMEM41B is a host factor required for the replication of diverse coronaviruses including SARS-CoV-2.,PLOS Pathog., 17(5), DOI: 10.1371/journal.ppat.1009599.
  • [4] A. Synowiec (2021), Identification of cellular factors required for SARS-CoV-2 replication.,Cells, 10(11), DOI: 10.3390/cells10113159.
  • [5] B.N.V. Fernandez (2021), Personalized health and the coronavirus vaccines - Do individual genetics matter?.,Bioessays, 43(9), DOI: 10.1002/ bies.202100087.
  • [6] B. Hu; S. Huang; L. Yin (2021), The cytokine storm and Covid-19.,Journal of Medical Virology, 93(1), pp.250-256.
  • [7] Y. Hou (2020), New insights into genetic susceptibility of Covid-19: an ACE2 and TMPRSS2 polymorphism analysis.,BMC Med., 18(1), DOI: 10.1186/s12916-020-01673-z.
  • [8] I.S. Mahmoud (2020), SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention.,Biochimie, 175, pp.93-98.
  • [9] (2021), Fact Sheet for Health Care Providers: Emergency Use Authorization (EUA) of Remdesivir (GS-5734™).,36pp.
  • [10] X.J. He (2009), Influence of ABCB1 gene polymorphisms on the pharmacokinetics of azithromycin among healthy Chinese Han ethnic subjects.,Pharmacol. Rep., 61(5), pp.843-850.
  • [11] J.Y. Lee (2016), Association of polymorphisms of cytochrome P450 2D6 with blood hydroxychloroquine levels in patients with systemic lupus erythematosus.,Arthritis. Rheumatol., 68(1), pp.184-190.
  • [12] E. Maillart (2020), A case report of serious haemolysis in a glucose-6-phosphate dehydrogenase-deficient Covid-19 patient receiving hydroxychloroquine.,Infect. Dis. (Lond), 52(9), pp.659-661.
  • [13] E.S. Rosenberg (2020), Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with Covid-19 in New York State.,JAMA, 323(24), pp.2493-2502.
  • [14] D.T. Nguyen (2021), Polymorphism of the TMPRSS2 gene relating to Covid-19 susceptibility in Vietnamese population.,Academia Journal of Biology, 43(1), pp.119-128.
  • [15] N.H. Nguyen (2020), The first cohort of the Covid-19 patients in Vietnam and the national response to the pandemic.,Int. J. Med. Sci., 17(16), pp.2449-2453.
  • [16] L. Cooling (2015), Blood groups in infection and host susceptibility.,Clin. Microbiol. Rev., 28(3), pp.801-870.
  • [17] S.C. Wu (2021), The SARS-CoV-2 receptor-binding domain preferentially recognizes blood group A.,Blood Adv., 5(5), pp.1305-1309.
  • [18] R.L. Hoiland (2020), The association of ABO blood group with indices of disease severity and multiorgan dysfunction in Covid-19.,Blood Adv., 4(20), pp.4981-4989.
  • [19] A. Abdollahi (2020), The novel coronavirus SARS-CoV-2 vulnerability association with ABO/Rh blood types.,Iran J. Pathol., 15(3), pp.156-160.
  • [20] E.M. Diaz (2021), Relationship between the ABO blood group and Covid-19 susceptibility, severity and mortality in two cohorts of patients.,Blood Transfus., 19(1), pp.54-63.
  • [21] Y. Wu; Z. Feng; P. Li; Q. Yu (2020), Relationship between ABO blood group distribution and clinical c-haracteristics in patients with Covid-19.,Clin. Chim. Acta., 509, pp.220-223.
  • [22] S.C. Hoffmann (2002), Ethnicity greatly influences cytokine gene polymorphism distribution.,Am. J. Transplant., 2(6), pp.560-567.
  • [23] J. Zuniga (2012), Genetic variants associated with severe pneumonia in A/H1N1 influenza infection.,Eur. Respir. J., 39(3), pp.604-610.
  • [24] C.F. Terry; V. Loukaci; F.R. Green (2000), Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation.,J. Biol. Chem., 275(24), pp.18138-18144.
  • [25] S.C. Sanderson (2009), Association between IL6 gene variants -174G>C and -572G>C and serum IL-6 levels: interactions with social position in the Whitehall II cohort.,Atherosclerosis, 204(2), pp.459-464.
  • [26] D.J. Brull (2001), Interleukin-6 gene -174g>c and -572g>c promoter polymorphisms are strong predictors of plasma interleukin-6 levels after coronary artery bypass surgery.,Arterioscler. Thromb. Vasc. Biol., 21(9), pp.1458-1463.
  • [27] R. Minkelen (2007), Haplotypes of IL1B, IL1RN, IL1R1, and IL1R2 and the risk of venous thrombosis.,Arterioscler. Thromb. Vasc. Biol., 27(6), pp.1486-1491.
  • [28] J.A. Patel (2006), Association of proinflammatory cytokine gene polymorphisms with susceptibility to otitis media.,Pediatrics, 118(6), pp.2273- 2279.
  • [29] F. Zehsaz (2015), IL-10 G-1082A gene polymorphism and susceptibility to upper respiratory tract infection among endurance athletes.,J. Sports Med. Phys. Fitness, 55(1-2), pp.128-134.
  • [30] M. Keshavarz (2019), Association of polymorphisms in inflammatory cytokines encoding genes with severe cases of influenza A/H1N1 and B in an Iranian population.,Virology Journal, 16(1), DOI: 10.1186/s12985- 019-1187-8.
  • [31] W.J. Doyle (2010), The interleukin 6 -174 C/C genotype predicts greater rhinovirus illness.,J. Infect. Dis., 201(2), pp.199-206.
  • [32] K. Revai (2009), Association between cytokine gene polymorphisms and risk for upper respiratory tract infection and acute otitis media.,Clin. Infect. Dis., 49(2), pp.257-261.
  • [33] X. Chen (2020), Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically Ill patients with coronavirus disease 2019.,Clin. Infect. Dis., 71(8), pp.1937-1942.
  • [34] Y. Tomita; T. Ikeda; R. Sato; T.Sakagami (2020), Association between HLA gene polymorphisms and mortality of Covid-19: An in silico analysis.,Immun. Inflamm. Dis., 8(4), pp.684-694.
  • [35] A. Nguyen (2020), Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2.,J. Virol., 94(13), DOI: 10.1128/JVI.00510-20.
  • [36] C.A.M.L.Porta; S. Zapperi (2020), Estimating the binding of SARSCoV-2 peptides to HLA class I in human subpopulations using artificial neural networks.,Cell Systems, 11(4), pp.412-417.
  • [37] F.M.A. Naemi (2021), Association between the HLA genotype and the severity of Covid-19 infection among South Asians.,J. Med. Virol., 93(7), pp.4430-4437.
  • [38] D.J. Langton (2021), The influence of HLA genotype on the severity of Covid-19 infection.,HLA, 98(1), pp.14-22.
  • [39] A. Amoroso (2021), HLA and AB0 polymorphisms may influence SARS-CoV-2 infection and Covid-19 severity.,Transplantation, 105(1), pp.193- 200.
  • [40] L. Lorente (2021), HLA genetic polymorphisms and prognosis of patients with Covid-19.,Med. Intensiva, 45(2), pp.96-103.
  • [41] F. Wang (2020), Initial whole-genome sequencing and analysis of the host genetic contribution to Covid-19 severity and susceptibility.,Cell Discov., 6(1), DOI: 10.1038/s41421-020-00231-4.
  • [42] A. Novelli (2020), HLA allele frequencies and susceptibility to Covid-19 in a group of 99 Italian patients.,HLA, 96(5), pp.610-614.
  • [43] W. Wang (2020), Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease-2019 (Covid-19).,HLA, 96(2), pp.194-196.
  • [44] J. Gao (2019), The human leukocyte antigen and genetic susceptibility in human diseases.,Journal of Bio-X Research, 2(3), pp.112-120.
  • [45] L.M. Zahn (2020), HLA genetics and Covid-19.,Science, 368(6493), DOI: 10.1128/JVI.00510-20.
  • [46] A. Iwasaki; N.D. Grubaugh (2020), Why does Japan have so few cases of Covid-19?.,EMBO Mol. Med., 12(5), DOI: 10.15252/emmm.202012481.
  • [47] Y. Shao (2016), Association study between promoter polymorphisms of ADAM17 and progression of sepsis.,Cell Physiol. Biochem., 39(4), pp.1247-1261.
  • [48] Y. Li (2014), Association between ADAM17 promoter polymorphisms and ischemic stroke in a Chinese population.,J. Atheroscler. Thromb., 21(8), pp.878-893.
  • [49] L. Wulandari (2021), Initial study on TMPRSS2 p.Val160Met genetic variant in Covid-19 patients.,Hum. Genomics, 15(1), DOI: 10.1186/ s40246-021-00330-7.
  • [50] R. Vishnubhotla (2020), Genetic variants in TMPRSS2 and structure of SARS-CoV-2 spike glycoprotein and TMPRSS2 complex.,bioRxiv, DOI: 10.1101/2020.06.30.179663.
  • [51] A. Paniri; M.M. Hosseini; H.A. Niaki (2021), First comprehensive computational analysis of functional consequences of TMPRSS2 SNPs in susceptibility to SARS-CoV-2 among different populations.,J. Biomol. Struct. Dyn., 39(10), pp.3576-3593.
  • [52] R. Asselta (2020), ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in Covid-19 severity in Italy.,Aging (Albany NY), 12(11), pp.10087-10098.
  • [53] R. Russo (2020), Genetic analysis of the coronavirus SARSCoV-2 host protease TMPRSS2 in different populations.,Front. Genet., 11, DOI: 10.3389/fgene.2020.00872.
  • [54] C. Bhattac-haryya (2020), Global spread of SARS-CoV-2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 genes.,bioRxiv, DOI: 10.1101/2020.05.04.075911.
  • [55] M. Hoffmann (2020), SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.,Cell, 181(2), pp.271-280.
  • [56] H. Lanjanian (2021), SARS-CoV-2 infection susceptibility influenced by ACE2 genetic polymorphisms: insights f-rom Tehran Cardio-Metabolic genetic study.,Sci. Rep., 11(1), DOI: 10.1038/s41598-020-80325-x.
  • [57] M. Calcagnile (2020), ACE2 polymorphisms and individual susceptibility to SARS-CoV-2 infection: insights f-rom an in silico study.,bioRxiv, DOI: 10.1101/2020.04.23.057042.
  • [58] E. Procko (2020), The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS coronavirus 2.,bioRxiv, DOI: 10.1101/2020.03.16.994236.
  • [59] K. Suryamohan (2021), Human ACE2 receptor polymorphisms and al-tered susceptibility to SARS-CoV-2.,Commun. Biol., 4, DOI: 10.1038/ s42003-021-02030-3.
  • [60] J. Chen (2020), Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation.,Aging Cell, 19(7), DOI: 10.1111/ acel.13168.
  • [61] Y. Cao (2020), Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations.,Cell Discov., 6, DOI: 10.1038/s41421-020-0147-1.
  • [62] D. Gemmati (2020), Covid-19 and individual genetic susceptibility/receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation. might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males?.,Int. J. Mol. Sci., 21(10), DOI: 10.3390/ijms21103474.
  • [63] W. Li (2005), Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2.,The EMBO J., 24(8), pp.1634-1643.
  • [64] P. Brest (2020), Host polymorphisms may impact SARS-CoV-2 infectivity.,Trends Genet., 36(11), pp.813-815.
  • [65] A. Heurich (2014), TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein.,J. Virol., 88(2), pp.1293-1307.
  • [66] N.S.A. Husn; E.E. Kenny (2019), Personalized medicine and the power of electronic health records.,Cell, 177(1), pp.58-69.
  • [67] A.V. Khera (2018), Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations.,Nat. Genet., 50(9), pp.1219-1224.
  • [68] H. Namkoong (2021), Japan Covid-19 task force: a nation-wide consortium to elucidate host genetics of Covid-19 pandemic in Japan.,medRxiv, DOI: 10.1101/2021.05.17.21256513.
  • [69] (2021), Mapping the human genetic architecture of Covid-19.,Covid-19 Host Genetics Initiative. Nature, 600, pp.472-477.
  • [70] D. Ellinghaus (2020), Genomewide association study of severe Covid-19 with respiratory failure.,N. Engl. J. Med., 383(16), pp.1522-1534.
  • [71] P.M. Visscher (2012), Five years of GWAS discovery.,Am. J. Hum. Genet., 90(1), pp.7-24.