Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,411,148
  • Công bố khoa học và công nghệ Việt Nam

Công nghệ sinh học liên quan đến y học, y tế

Nguyễn Minh Giang, Đỗ Thị Huyền(1), Phùng Thu Nguyệt2, Trương Nam Hải

Xây dựng Probe để khai thác và chọn gen mã hóa Endo 1-4 xylanase từ dữ liệu giải trình tự DNA metagenome

Probe design for mining and selection of genes coding endo 1-4 xylanase from dna metagenome data

Sinh học

2018

1

39-50

0866-7160

Dựa trên các trình tự đã được nghiên cứu kỹ về đặc điểm chức năng, hai probe dùng để khai thác endo 1-4 xylanase GH10 và GH11 đã được xây dựng. Kết quả sử dụng probe trên đã lựa chọn được một gen mã hóa endo 1-4 xylanase từ dữ liệu giải metagenome của vi khuẩn trong ruột mối. Trình tự này đã được kiểm chứng lại về chức năng bằng BlastP và cấu trúc không gian bằng hai phần mềm Phyre2 và Swiss Prot.

According to the CAZY classification, endo 1- 4 xylanase belongs to GH 5, 8, 10, 11, 30, 51, 98. However only 03 sequences of GH8, 27 sequences of GH10, 18 sequence of GH11, only one sequence of each GH30 and GH51 from CAZy and NCBI database were thouroughly experimentally studied for biological activity and characteristics of the enzyme. Through the collected sequences, two probes for endo 1- 4 xylanase of GH10 and GH11 were designed, based on the sequence homology. The GH10 probe was 338 amino acids lenghth contained all the conserved amino acid residues (16 conserved residues in all sequences, 13 residues similar in almost sequences, 14 residues conserved in many sequences) with the lowest maxscore of 189, coverage of 88% and identity of 39%. The GH11 probe was 204 amino acids contained all the conserved amino acid residues (54 conserved residues were identity in all sequences, 25 residues similar in almost sequences, 24 residues conserved in many sequences) with the lowest maxscore of 165, coverage of 84% and identity of 50%. Using the two probes, we mined only one sequence (GL0018509) for endo 1-4 xylanase from metagenomic DNA data of free-living bacteria in Coptotermes termite gut. Prediction of threedimention structure of GL0018509 sequence by Phyre2 and Swiss Prot showed that this sequence was high similarity (95% by Phyre2 and 93,4% by Swiss Prot) with endo 1-4 xylanase with the 100% confidence.

TTKHCNQG, CVv 27

  • [1] Zhou J.; He Z., Yang,Y., Deng Y., Tringe S. G., Alvarez-Cohen L. (2015), High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats,mBio., 6(1): e02288-14
  • [2] Wang Q. (2013), Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers,Green Process. Synth., 2(6): 637-637
  • [3] Subramaniyan S., Prema P., (2002), Biotechnology of microbial xylanases: enzymology, molecular biology, and application,Crit. Rev. Biotechnol., 22(1): 33-64.
  • [4] Rawashdeh R., Saadoun I., Mahasneh A., (2005), Effect of cultural conditions on xylanase production by Streptomyces sp. (strain Ib 24D) and its potential to utilize tomato pomace,Afr. J. Biotechnol., 4(3): trang??.
  • [5] Mitsuhashi M., Cooper A., Ogura M., Shinagawa T., Yano K., Hosokawa T., (1994), Oligonucleotide probe design - a new approach,Nature, 367(6465): 759-761.
  • [6] Lombard V., Ramulu G. H., Drula E., Coutinho P. M., Henrissat B., (2014), The carbohydrate-active enzymes database (CAZy) in 2013,Nucleic Acids Res., 42(D1): D490-D495.
  • [7] Koshland D. E., (1953), Stereochemistry and the mechanism of enzymatic reactions. Biol,Rev., 28(4): 416-436.
  • [8] Kamble R. D., Jadhav A. R., (2012), Isolation, purification, and c-haracterization of xylanase produced by a new species of Bacillus in solid state fermentation,Int. J. Microbiol., 2012: e683193.
  • [9] Henrissat B. (1991), A classification of glycosyl hydrolases based on amino acid sequence similarities,Biochem. J., 280(2): 309-316.
  • [10] He J., Yin J., Wang L., Yu B., Chen D. (2010), Functional c-haracterisation of a recombinant xylanase f-rom Pichia pastoris and effect of the enzyme on nutrient digestibility in weaned pigs,Br. J. Nutr., 103(10): 1507-1513.
  • [11] Do T. H., Nguyen T. T., Nguyen T. N., Le Q. G., Nguyen C., Kimura K., Truong N. H. (2014), Mining biomass-degrading genes through Illumina-based de novo sequencing and metagenomic analysis of free-living bacteria in the gut of the lower termite Coptotermes gestroi harvested in Vietnam,J. Biosci. Bioeng., 118(6): 665-671.
  • [12] Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B., (2009), The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics,Nucleic Acids Res., 37(Database issue): D233-D238.
  • [13] Baldwin D. A., Feldman M., Alwine J. C., Robertson E. S., (2014), Metagenomic assay for identification of microbial pathogens in tumor tissues,mBio, 5(5): e01714-01714.
  • [14] Akama T., Kawashima A., Tanigawa K., Hayashi M., Ishido Y., Luo Y., Hata A., Fujitani N., Ishii N., Suzuki K. (2013), Comprehensive analysis of prokaryotes in environmental water using DNA microarray analysis and whole genome amplificatio,Pathogens, 2(4): 591-605