Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  24,611,359
  • Công bố khoa học và công nghệ Việt Nam

Khoa học kỹ thuật và công nghệ

BB

Lưu Hữu Nguyên(2), Nguyễn Thị Ngọc Anh, Nguyễn Thanh Hường, Đỗ Khánh Tùng, Phạm Quang Ngân(3), Phạm Hồng Nam(1)

ẢNH HƯỞNG CỦA KÍCH THƯỚC HẠT LÊN TÍNH CHẤT TỪ VÀ QUANG CỦA HỆ HẠT NANO Fe3O4

EFFECT OF SIZE ON MAGNETIC AND OPTICAL PROPERTIES OF Fe3O4 NANOPARTICLES

Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên

2023

02

217 - 224

Trong bài báo này, ảnh hưởng của kích thước hạt lên tính chất từ (từ độ MS, dị hướng từ hiệu dụng Keff) và tính chất quang (độ rộng vùng cấm) của các hạt nano từ Fe3O4 (FO) được khảo sát. Các hạt FO được tổng hợp bằng phương pháp đồng kết tủa với các nhiệt độ phản ứng khác nhau 50°C, 60°C, 70°C và 80°C, và kích thước tương ứng lần lượt là 8,7 nm, 10,1 nm, 10,4 nm và 11,9 nm. Trong khi từ độ MS của hạt FO tăng từ 51,65 emu/g xuống 64,56 emu/g thì giá trị dị hướng từ của chúng giảm từ 18,26 kJ/m3 đến 12,49 kJ/m3 theo chiều tăng của kích thước hạt từ 8,7 nm đến 11,9 nm. Bên cạnh đó, sự thay đổi độ rộng vùng cấm từ 2,23 eV (~ 11,9 nm) đến 2,75 eV (~ 8,7 nm) thể hiện ảnh hưởng của kích thước lên tính chất quang của mẫu FO. Kích thước hạt là yếu tố quan trọng ảnh hưởng đến tính chất từ và tính chất quang của các hạt nano từ FO.

In this paper, the influence of nanoparticle size on magnetic properties (saturation magnetization MS, effective magnetic anisotropy Keff) and optical properties (energy band gap Eg) were investigated. Magnetic nanoparticles Fe3O4 (FO) were synthesized by co-precipitation with different reaction temperatures of 50°C, 60°C, 70°C, and 80°C. They had sizes of 8.7 nm, 10.1 nm, 10.4 nm, and 11.9 nm, respectively. While the value of saturation magnetization MS increased from 51.65 emu/g to 64.56 emu/g, their magnetic anisotropy value decreased from 18.26 kJ/m3 to 12.49 kJ/m3 when the value of diameter of magnetic nanoparticles Fe3O4 changed from 8.7 nm to 11.9 nm. In addition, the changing of the energy band gap Eg from 2.23 eV (~ 11.9 nm) to 2.75 eV (~ 8.7 nm) indicated the effect of nanoparticle size on optical properties for magnetic nanoparticles FO. The nanoparticle size is an important factor affecting the magnetic and optical properties of FO magnetic nanoparticles.

  • [1] J. Tauc; R. Grigorovici; A. Vancu (1966), Optical properties and electronic structure of amorphous germanium,Physica Status Solidi (b)
  • [2] R. Yanes; O. Chubykalo-Fesenko; H. Kachkachi; D. A. Garanin; R. Evans; R. W. Chantrell (2007), Effective anisotropies and energy barriers of magnetic nanoparticles with Néel surface anisotropy,Physical Review B
  • [3] R. H. Kodama; S. A. Makhlouf; A. E. Berkowitz (1997), Finite size effects in antiferromagnetic NiO nanoparticles,Physical Review Letters
  • [4] G. F. Goya; T. S. Berquo; F. C. Fonseca; M. P. Morales (2003), Static and dynamic magnetic properties of spherical magnetite nanoparticles,Journal of Applied Physics
  • [5] R. E. Rosensweig (2002), Heating magnetic fluid with alternating magnetic field,Journal of Magnetism and Magnetic Materials
  • [6] J. Liang; L. Li; M. Luo; J. Fang; Y. Hu (2010), Synthesis and properties of magnetite Fe3O4 via a simple hydrothermal route,Solid State Sciences
  • [7] Z. J. Zhang; X. Y. Chen; B. N. Wang; C. W. Shi (2008), Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties,Journal of Crystal Growth
  • [8] L. T. Dat; L. H. Nguyen; N. H. Nam; T. D. Van; N. X. Truong; V.-Q. Nguyen; P. T. Phong; P. H. Nam (2022), Dependence of specific absorption rate on concentration of Fe3O4 nanoparticles: from the prediction of Monte Carlo simulations to experimental results,Journal of Nanoparticle Research
  • [9] A. Radoń; A. Drygała; Ł. Hawełek; D. Łukowiec (2017), Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers,Materials Characterization
  • [10] M. E. Sadat; M. K. Baghbador; A. W. Dunn; H. P. Wagner; R. C. Ewing; J. Zhang; H. Xu; G. M. Pauletti; D. B. Mast; D. Shi (2014), Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy,Applied Physics Letters
  • [11] A. H. Habib; C. L. Ondeck; P. Chaudhary; M. R. Bockstaller; M. E. McHenry (2008), Evaluation of iron-cobalt/ferrite core-shell nanoparticles for cancer thermotherapy,Journal of Applied Physics
  • [12] Y. Dong; B. Wen; Y. Chen; P. Cao; C. Zhang (2016), Autoclave-free facile approach to the synthesis of highly tunable nanocrystal clusters for magnetic responsive photonic crystals,RSC Advances
  • [13] F. Ozel; H. Kockar; O. Karaagac (2015), Growth of iron oxide nanoparticles by hydrothermal process: effect of reaction parameters on the nanoparticle size,Journal of Superconductivity and Novel Magnetism
  • [14] Y.-w. Jun; Y.-M. Huh; J.-s. Choi; J.-H. Lee; H.-T. Song; S. Kim; S. Yoon; K.-S. Kim; J.-S. Shin; J.-S. Suh (2005), Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging,Journal of the American Chemical Society
  • [15] I. M. Obaidat; B. Issa; Y. Haik (2015), Magnetic properties of magnetic nanoparticles for efficient hyperthermia,Nanomaterials
  • [16] Y. Li; W. Duan; X. Lu; S. Yang; X. Wen (2019), Synthesis of strawberry-like Fe3O4@SiO2@Ag composite colloidal particles for constructing responsive photonic crystals,Optik
  • [17] C. Bai; P. Hu; N. Liu; G. Feng; D. Liu; Y. Chen; M. Ma; N. Gu; Y. Zhang (2020), Synthesis of Ultrasmall Fe3O4 Nanoparticles as T1–T2 Dual-Modal Magnetic Resonance Imaging Contrast Agents in Rabbit Hepatic Tumors,ACS Applied Nano Materials
  • [18] L. H. Nguyen; V. T. K. Oanh; P. H. Nam; D. H. Doan; N. X. Truong; N. X. Ca; P. T. Phong; L. V. Hong; T. D. Lam (2020), Increase of magnetic hyperthermia efficiency due to optimal size of particles: theoretical and experimental results,Journal of Nanoparticle Research
  • [19] F. Chen; N. Ilyas; X. Liu; Z. Li; S. Yan; H. Fu (2021), Size Effect of Fe3O4 Nanoparticles on Magnetism and Dispersion Stability of Magnetic Nanofluid,Frontiers in Energy Research
  • [20] A. E. Deatsch; B. A. Evans (2014), Heating efficiency in magnetic nanoparticle hyperthermia,Journal of Magnetism and Magnetic Materials
  • [21] K. Kalantari; M. B. Ahmad; H. R. F. Masoumi; K. Shameli; M. Basri; R. Khandanlou (2014), Rapid Adsorption of Heavy Metals by Fe3O4/Talc Nanocomposite and Optimization Study Using Response Surface Methodology,International Journal of Molecular Sciences
  • [22] K. K. Kefeni; B. B. Mamba (2020), Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment,Materials Today: Proceedings (SM&T)
  • [23] K. K. Kefeni; T. A. M. Msagati; T. T. Nkambule; B. B. Mamba (2020), Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity,Materials Science and Engineering: C