Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,632,738
  • Công bố khoa học và công nghệ Việt Nam

Công nghệ sinh học liên quan đến thao tác với các tế bào, mô, cơ quan hay toàn bộ sinh vật; công nghệ tế bào gốc

Hồ Nguyễn Quỳnh Chi, Hoàng Nghĩa Quang Huy, Đoàn Chính Chung, Hoàng Nghĩa Son, Lê Thành Long, Hoàng Nghĩa Sơn(1)

Sự ức chế tăng sinh của tế bào gốc trung mô trong điều kiện vi trọng lực mô phỏng

Tạp chí Công nghệ Sinh học - Viện Khoa học và Công nghệ Việt Nam

2020

2

257-264

1811-4989

Nghiên cứu đánh giá ảnh hưởng của điều kiện vi trọng lực mô phỏng (SMG) lên dòng tế bào gốc trung mô (MSCs). Hệ thống clinostat 3D được sử dụng để tạo ra môi trường vi trọng lực mô phỏng. Kết quả nghiên cứu cho thấy mật độ của các tế bào MSCs ở nhóm đối chứng cao hơn so với nhóm SMG. Phân tích chu kỳ tế bào cũng cho thấy tỉ lệ các tế bào MSCs đi vào pha G0/G1 ở nhóm SMG cao hơn so với nhóm đối chứng, trong khi tỉ lệ MSCs đi vào pha S và pha G2/M ở nhóm SMG lại thấp hơn nhóm đối chứng. Phương pháp Realtime qRT- PCR được dùng để đánh giá biểu hiện phiên mã các gen liên quan đến chu kỳ tế bào bao gồm Cyclin-dependent kinase 2 (Cdk2), Cyclin-dependent kinase 6 (Cdk6) và Cyclin A. Kết quả phân tích Realtime qRT-PCR cho thấy Ho Nguyen Quynh Chi et al. 264 các gen này đều giảm biểu hiện ở nhóm tế bào cảm ứng vi trọng lực (SMG). Phương pháp flow cytometry được thực hiện để xác định tỉ lệ chết theo chương trình của tế bào MSCs trong hai nhóm thí nghiệm. Kết quả cho thấy không có sự khác biệt mang ý nghĩa thống kê về tỉ lệ tế bào chết theo chương trình giữa nhóm SMG và nhóm đối chứng. Phân tích Realtime qRT-PCR cũng cho thấy giữa hai nhóm thí nghiệm có mức độ biểu hiện tương đương hai gen liên quan đến sự chết theo chương trình là Bcl2 và Bax.

TTKHCNQG, CVv 262

  • [1] Yuge L, Hide I, Kumagai T, Kumei Y, Takeda S, Kanno M, Sugiyama M, Kataoka K (2003), Cell differentiation and p38 (MAPK) cascade are inhibited in human osteoblasts cultured in a three-dimensional clinostat.,In Vitro Cell Dev Biol Anim 39: 89e97.
  • [2] Yan M, Wang Y, Yang M, Liu Y, Qu B, Ye Z, Liang W, Sun X, Luo Z (2015), The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells.,Biochem Biophys Res Commun 460: 327–332.
  • [3] Wuest SL, Ric-hard S, Kopp S, Grimm D, Egli M (2015), Simulated Microgravity: Critical Review on the Use of Random Positioning Machines for Mammalian Cell Culture.,Biomed Res Int 971474.
  • [4] Wang S, Yin Z, Zhao B, Qi Y, Liu J, Rahimi SA, Lee LY, Li S (2017), Microgravity simulation activates Cdc42 via Rap1GDS1 to promote vascular branch morphogenesis during vasculogenesis.,Stem Cell Res 25: 157-165.
  • [5] von Sachs J (1879), Ueber Ausschliessung der geotropischen und heliotroposchen Krummungen warend des Wachsthums.,Wurzburger Arbeiten 2: 209–225.
  • [6] van Loon JJWA (2007), Some history and use of the random positioning machine, RPM, in gravity related research.,Adv Space Res 39: 1161–1165.
  • [7] van den Heuvel S, Harlow E (1993), Distinct roles for cyclin-dependent kinases in cell cycle control.,Science 262: 2050–2054.
  • [8] Tessari MA, Gostissa M, Altamura S, Sgarra R, Rustighi A, Salvagno C, Caretti G, Imbriano C, Mantovani R, Del Sal G, Giancotti V, Manfioletti G (2003), Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2.,Mol Cell Biol 23(24): 9104–9116.
  • [9] Srinivasan G, Morgan D, Varun D, Brookhouser N, Brafman DA (2018), An integrated biomanufacturing platform for the large-scale expansion and neuronal differentiation of human pluripotent stem cellderived neural progenitor cells.,Acta Biomater 74: 168-179.
  • [10] Ren Y, Qiu L, Lü F, Ru X, Li S, Xiang Y, Yu S, Zhang Y (2016), TALENs-directed knockout of the full-length transcription factor Nrf1α that represses malignant behaviour of human hepatocellular carcinoma (HepG2) cells.,Sci Rep 6: 23775.
  • [11] Meyerson M, Enders GH, Wu CL, Su LK, Gorka C, Nelson C, Harlow E, Tsai LH (1992), A family of human cdc2-related protein kinases.,EMBO J 11(8): 2909–2917
  • [12] Meloni MA, Galleri G, Pani G, Saba A, Pippia P, Cogoli-Greuter M (2011), Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111.,Cytoskeleton 68: 125e37
  • [13] Livak KJ, Schmittgen TD (2001), Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2-∆∆Ct Method.,Methods 25: 402-408.
  • [14] Kim YJ, Jeong AJ, Kim M, Lee C, Ye SK, Kim S (2017), Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L540 and HDLM-2, using a 3D clinostat.,Biomed Eng Online 16(1): 48.
  • [15] Kim J, Montagne K, Nemoto H, Ushida T, Furukawa KS (2017), Hypergravity downregulates c-fos gene expression via ROCK/Rho-GTP and the PI3K signaling pathway in murine ATDC5 chond-roprogenitor cells.,PLoS One 12: e0185394.
  • [16] Kawahara Y, Manabe T, Matsumoto M, Kajiume T, Matsumoto M, Yuge L (2009), LIFfree embryonic stem cell culture in simulated microgravity.,PLoS One 4: e6343
  • [17] Imura T, Nakagawa K, Kawahara Y, Yuge L (2018), Stem cell culture in microgravity and its application in cell-based therapy.,Stem Cell Dev 27: 1298e302.
  • [18] Huang Y, Dai ZQ, Ling SK, Zhang HY, Wan YM, Li YH (2009), Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells.,J Biomed Sci 16: 87.
  • [19] Hoson T, Soga K, Mori R, Saiki M, Wakabayashi K, Kamisaka S, Kamigaichi S, Aizawa S, Yoshizaki I, Mukai C, Shimazu T, Fukui K, Yamashita M (1999), Morphogenesis of rice and Arabidopsis seedlings in space.,J Plant Res 112: 477e86.
  • [20] Herranz R, Anken R, Boonstra J, Braun M, Christianen PCM, de Geest M, Hauslage J, Hilbig R, Hill RJA, Lebert M, Medina FJ, Vagt N, Ullrich O, van Loon JJWA, Hemmersbach R (2013), Groundbased facilities for simulation of microgravity: organism specific recommendations for their use, and recommended terminology.,Astrobiology 13: 1–17.
  • [21] Herranz R, Medina FJ (2014), Cell proliferation and plant development under novel al-tered gravity environments.,Plant Biol 16: 23e30
  • [22] Häder PD, Hemmersbach R, Lebert M (2005), Gravity and the behavior of unicellular organisms In Bard JBL, Barlow PW, Kirk DL, eds. Developmental and Cell Biology Series.,Cambridge University Press, Cambridge: 12 – 27.
  • [23] Gorgogietas VA, Tsialtas I, Sotiriou N, Laschou VC, Karra AG, Leonidas DD, Chrousos GP, Protopapa E, Psarra AG (2018), Potential interference of aluminum chlorohydrate with estrogen receptor signaling in breast cancer cells.,J Mol Biochem 7: 1–13.
  • [24] De Boer L, Oakes V, Beamish H, Giles N, Stevens F, Somodevilla-Torres M, DeSouza C, Gabrielli B (2008), Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events.,Oncogene 27: 4261–4268
  • [25] Cazzaniga A, Maier JAM, Castiglioni S (2016), Impact of simulated microgravity on human bone stem cells: New hints for space medicine.,Biochem Biophys Res Commun 473: 181-186.
  • [26] Brungs S, Egli M, Wuest SL, Christianen PCM, van Loon JJWA, Anh TJN, Hemmersbach R (2016), Facilities for simulation of microgravity in the ESA ground-based facility programme.,Microgravity Sci Technol 28: 191–203.
  • [27] Bizzarri M, Monici M, van Loon JJWA (2015), How Microgravity Affects the Biology of Living Systems.,Biomed Res Int 863075.
  • [28] Barrila J, Crabbé A, Yang J, Franco K, Nydam SD, Forsyth RJ, Davis RR, Gangaraju S, Ott M, Coyne CB, Bissell MJ, Nickerson CA (2018), Modeling hostpathogen interactions in the context of the microenvironment: three-dimensional cell culture comes of age.,Infect Immun 86(11): e00282-18.
  • [29] Aleem E, Kiyokawa H, Kaldis P (2005), Cdc2-cyclin E complexes regulate the G1/S phase transition.,Nat Cell Biol 7: 831–836.