



- Công bố khoa học và công nghệ Việt Nam
Kỹ thuật thuỷ lợi
Nguyễn Hoàng Tuấn, Trần Đăng An(2), Triệu Ánh Ngọc(1), Huỳnh Duy Linh
Dự báo khả năng rò rỉ trên mạng lưới cấp nước bằng một số kỹ thuật học máy: Nghiên cứu điển hình cho hệ thống cấp nước Trung An - Thành phồ Hồ Chí Minh
Prediction of water leakages in water distribution Network using machine learning techniques: a case study for Trung An water supply system - Ho Chi Minh city
Khoa học kỹ thuật Thủy lợi và Môi trường
2022
78
44-52
1859-3941
TTKHCNQG, CVt 64
- [1] Xue, P., Jiang, Y., Zhou, Z., Chen, X., Fang, X., & Liu, J. (2020), Machine learning-based leakage fault detection for district heating networks.,Energy and Buildings, 223, 110161.
- [2] Wéber, R., Huzsvár, T., & Hős, C. (2021), Vulnerability of water distribution networks with real-life pipe failure statistics.,Water Supply, ws2021447
- [3] Tran, D. A., Tsujimura, M., Ha, N. T., Nguyen, V. T., Binh, D. V., Dang, T. D., . . . Pham, T. D. (2021), Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam.,Ecological Indicators, 127, 107790.
- [4] Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single diagram.,Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192.
- [5] Stone, M. (1979), Comments on Model Se-lection Criteria of Akaike and Schwarz. Journal of the Royal Statistical Society.,Series B (Methodological), 41(2), 276-278.
- [6] Phạm Thi Minh Lanh, N. Q. T. (2022), A comparison study of water pipe failure prediction models.,Journal of Water Resources.
- [7] Hu, X., Han, Y., Yu, B., Geng, Z., & Fan, J. (2021), Novel leakage detection and water loss management of urban water supply network using multiscale neural networks.,Journal of Cleaner Production, 278, 123611.
- [8] Hancock, J. T., & Khoshgoftaar, T. M. (2020), CatBoost for big data: an interdisciplinary review.,Journal of Big Data, 7(1), 94
- [9] Friedman, J. H. (2001), Greedy Function Approximation: A Gradient Boosting Machine.,The Annals of Statistics, 29(5), 1189-1232.
- [10] Cantos Wilmer, P., Juran, I., & Tinelli, S. (2020), Machine-Learning–Based Risk Assessment Method for Leak Detection and Geolocation in a Water Distribution System.,Journal of Infrastructure Systems, 26(1), 04019039.
- [11] Candelieri, A., Soldi, D., Conti, D., & Archetti, F. (2014), Analytical Leakages Localization in Water Distribution Networks through Spectral Clustering and Support Vector MACHINES.,The Icewater Approach. Procedia Engineering, 89, 1080-1088.
- [12] Banjara, N. K., Sasmal, S., & Voggu, S. (2020), Machine learning supported acoustic emission technique for leakage detection in pipelines,. International Journal of Pressure Vessels and Piping, 188, 104243
- [13] Balabin, R. M., & Lomakina, E. I. (2011), Support vector machine regression (SVR/LS-SVM)—an al-ternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.,Analyst, 136(8), 1703-1712.
- [14] Akaike, H. (1974), A new look at the statistical model identification.,IEEE Transactions on Automatic Control, 19(6), 716-723.
- [15] Phạm Thị Minh Lành, N. Q. T. (2022), Mô hình ước lưu lượng lượng nước rò rỉ theo áp suất trên mạng lưới cấp nước.,Tạp chí Tài Nguyên Nước.