Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,403,716
  • Công bố khoa học và công nghệ Việt Nam

Di truyền học

Phạm Công Tuyên Ánh, Chu Đức Hà, Lê Thị Ngọc Quỳnh(2), Nguyễn Hữu Kiên(1), Phạm Phương Thu, Nguyễn Quốc Trung, Nguyễn Đức Bách, Nguyễn Văn Lộc

Tổng quan về tiềm năng ứng dụng của yếu tố phiên mã NAC trong cải thiện đặc tính chống chịu ở cây trồng

Potential Roles of NAC Transcription Factor in the Improvement of Stress Tolerance in Crops: a Review

Khoa học nông nghiệp Việt Nam

2021

5

684-694

2588-1299

Yếu tố phiên mã NAC (NAM, ATAF và CUC) được biết đến là một trong những họ protein điều hòa quá trình phiên mã với số lượng thành viên lớn nhất ở thực vật. Các nghiên cứu trước đây đã chứng minh chức năng của nhóm NAC liên quan đến các quá trình sinh học quan trọng ở cây trồng, đặc biệt là liên quan đến cơ chế đáp ứng các điều kiện bất thuận. Bài tổng quan này được thực hiện nhằm tóm lược thông tin của họ NAC trên các loài cây trồng. Đồng thời, chức năng của một số gen NAC liên quan đến cải thiện đặc tính chống chịu đã được thảo luận. Cuối cùng, một số định hướng nghiên cứu trong tương lai đã được đề xuất nhằm định hướng cho các nghiên cứu về ứng dụng gen NAC trong công tác chọn tạo giống cây trồng ứng phó biến đổi khí hậu.

NAC transcription factors have been regarded as one of the largest families of transcriptional regulators in plants. It has been demonstrated that NAC families played an important role in various biological processes in crops, particularly in abiotic stress response. This review summarizes the information of NAC families in numerous plant species. The functions of several NAC genes involving in the improvement of stress tolerance are discussed. Finally, some research orientations are proposed for further functional c-haracterization of NAC gene for the crop breeding strategy adaptable to the climate change.

TTKHCNQG, CTv 169

  • [1] Zhuo X., Zheng T., Zhang Z., Zhang Y., Jiang L., Ahmad S., Sun L., Wang J., Cheng T. & Zhang Q. (2018), Genome-wide analysis of the nac transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume.,Genes. 9(10): 494.
  • [2] Zheng X., Tang S., Zhu S., Dai Q. & Liu T. (2016), Identification of an NAC transcription factor family by deep transcriptome sequencing in onion (Allium cepa L.).,PLoS One. 11(6): e0157871.
  • [3] Zhang Y., Li D., Wang Y., Zhou R., Wang L., Zhang Y., Yu J., Gong H., You J. & Zhang X. (2018), Genome-wide identification and comprehensive analysis of the NAC transcription factor family in Sesamum indicum.,PLoS One. 13(6): e0199262.
  • [4] Zhang H., Kang H., Su C., Qi Y., Liu X. & Pu J. (2018), Genome-wide identification and expression profile analysis of the NAC transcription factor family during abiotic and biotic stress in woodland strawberry.,PLoS One. 13(6): e0197892.
  • [5] Yuan X., Wang H., Cai J., Li D. & Song F. (2019), NAC transcription factors in plant immunity.,Phytopathology Research. 1(1): 3.
  • [6] Yuan X., Wang H., Cai J., Bi Y., Li D. & Song F. (2019), Rice NAC transcription factor ONAC066 functions as a positive regulator of drought and oxidative stress response.,BMC plant biology. 19(1): 278.
  • [7] Yan H., Zhang A., Ye Y., Xu B., Chen J., He X., Wang C., Zhou S., Zhang X. & Peng Y. (2017), Genomewide survey of switchgrass NACs family provides new insights into motif and structure arrangements and reveals stress-related and tissue-specific NACs.,Scientific reports. 7(1): 1-15.
  • [8] Yamaguchi M., Ohtani M., Mitsuda N., Kubo M., Ohme-Takagi M., Fukuda H. & Demura T. (2010), VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis.,The Plant Cell. 22(4): 1249-1263.
  • [9] Xie L.-n., Ming C., Min D.-h., Lu F., Xu Z.-s., Zhou Y.-b., Xu D.-b., Li L.-c. & Zhang X.-h. (2017), The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway.,Journal of integrative agriculture. 16(3): 559-571.
  • [10] Wu H., Fu B., Sun P., Xiao C. & Liu J.H. (2016), A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance.,Plant physiology. 172(3): 1532-1547.
  • [11] Wray G.A., Hahn M.W., Abouheif E., Balhoff J.P., Pizer M., Rockman M.V. & Romano L.A. (2003), The evolution of transcriptional regulation in eukaryotes.,Molecular biology and evolution. 20(9): 1377-1419.
  • [12] Wang S., Huang J., Wang X., Dang H., Jiang T. & Han Y. (2019), Expression Analysis of the NAC Transcription Factor Family of Populus in Response to Salt Stress.,Forests. 10(8): 688.
  • [13] Wang L., Hu Z., Zhu M., Zhu Z., Hu J., Qanmber G. & Chen G. (2017), The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.).,Plant Cell, Tissue and Organ Culture (PCTOC). 129(1): 161-174.
  • [14] Vroemen C.W., Mordhorst A.P., Albrecht C., Kwaaitaal M.A. & De Vries S.C. (2003), CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis.,The Plant Cell. 15(7): 1563-1577.
  • [15] Van Ha C., Esfahani M.N., Watanabe Y., Tran U.T., Sulieman S., Mochida K., Van Nguyen D. & Tran L.S.P. (2014), Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments.,PLoS One. 9(12): e114107.
  • [16] Tran L.-S. P., Nakashima K., Sakuma Y., Simpson S. D., Fujita Y., Maruyama K., Fujita M., Seki M., Shinozaki K. & Yamaguchi-Shinozaki K. (2004), Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter.,The Plant Cell. 16(9): 2481-2498.
  • [17] Thirumalaikumar V.P., Devkar V., Mehterov N., Ali S., Ozgur R., Turkan I., Mueller‐Roeber B. & Balazadeh S. (2018), NAC transcription factor JUNGBRUNNEN 1 enhances drought tolerance in tomato.,Plant Biotechnology Journal. 16(2): 354-366.
  • [18] Takada S., Hibara K.-i., Ishida T. & Tasaka M. (2001), The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation.,Development. 128(7): 1127-1135.
  • [19] Tak H., Negi S. & Ganapathi T. (2017), Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance.,Protoplasma. 254(2): 803-816.
  • [20] Sun H., Huang X., Xu X., Lan H., Huang J. & Zhang H.S. (2012), ENAC1, a NAC transcription factor, is an early and transient response regulator induced by abiotic stress in rice (Oryza sativa L.).,Molecular biotechnology. 52(2): 101-110.
  • [21] Su H., Zhang S., Yuan X., Chen C., Wang X.F. & Hao Y.J. (2013), Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1, 2-CUC2 transcription factor family in apple.,Plant physiology and biochemistry. 71: 11-21.
  • [22] Shinde H., Dudhate A., Tsugama D., Gupta S.K., Liu S. & Takano T. (2019), Pearl millet stressresponsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis.,Plant physiology and biochemistry. 135: 546-553.
  • [23] Shen J., Lv B., Luo L., He J., Mao C., Xi D. & Ming F. (2017), The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice.,Scientific reports. 7: 40641.
  • [24] Shan X., Yang K., Xu X., Zhu C. & Gao Z. (2019), Genome-Wide Investigation of the NAC Gene Family and Its Potential Association with the Secondary Cell Wall in Moso Bamboo.,Biomolecules. 9(10): 609.
  • [25] Scorza L.C.T. & Dornelas M.C. (2011), Plants on the move: towards common mechanisms governing mechanically-induced plant movements.,Plant signaling & behavior. 6(12): 1979-1986
  • [26] Sanjari S., Shirzadian-Khorramabad R., Shobbar Z.S. & Shahbazi M. (2019), Systematic analysis of NAC transcription factors’ gene family and identification of post-flowering drought stress responsive members in sorghum.,Plant cell reports. 38(3): 361-376.
  • [27] Saad A.S.I., Li X., Li H.P., Huang T., Gao C.S., Guo M.W., Cheng W., Zhao G.Y. & Liao Y.C. (2013), A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses.,Plant Science. 203: 33-40.
  • [28] Riechmann J.L., Heard J., Martin G., Reuber L., Jiang C.-Z., Keddie J., Adam L., Pineda O., Ratcliffe O. & Samaha R. (2000), Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.,Science. 290(5499): 2105-2110.
  • [29] Redillas M.C., Jeong J.S., Kim Y.S., Jung H., Bang S.W., Choi Y.D., Ha S.H., Reuzeau C. & Kim J.K. (2012), The overexpression of OsNAC9 al-ters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions.,Plant Biotechnology Journal. 10(7): 792-805.
  • [30] Rahman H., Ramanathan V., Nallathambi J., Duraialagaraja S. & Muthurajan R. (2016), Overexpression of a NAC 67 transcription factor f-rom finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice.,BMC biotechnology. 16(1): 35.
  • [31] Puranik S., Sahu P.P., Srivastava P.S. & Prasad M. (2012), NAC proteins: regulation and role in stress tolerance.,Trends in Plant Science. 17(6): 369-381.
  • [32] Pinheiro G.L., Marques C.S., Costa M.D., Reis P.A., Alves M.S., Carvalho C.M., Fietto L.G. & Fontes E.P. (2009), Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response.,Gene. 444(1-2): 10-23.
  • [33] Ooka H., Satoh K., Doi K., Nagata T., Otomo Y., Murakami K., Matsubara K., Osato N., Kawai J. & Carninci P. (2003), Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana.,DNA research. 10(6): 239-247.
  • [34] Olsen A.N., Ernst H.A., Leggio L.L. & Skriver K (2005), NAC transcription factors: structurally distinct, functionally diverse.,Trends in plant science. 10(2): 79-87.
  • [35] Olsen A.N., Ernst H.A., Leggio L.L. & Skriver K. (2005), DNA-binding specificity and molecular functions of NAC transcription factors.,Plant Science. 169(4): 785-797.
  • [36] Nuruzzaman M., Manimekalai R., Sharoni A.M., Satoh K., Kondoh H., Ooka H. & Kikuchi S. (2010), Genome-wide analysis of NAC transcription factor family in rice. Gene. 465(1-2): 30-44.,
  • [37] Min X., Jin X., Zhang Z., Wei X., Ndayambaza B., Wang Y. & Liu W. (2019), Genome-Wide Identification of NAC Transcription Factor Family and Functional Analysis of the Abiotic StressResponsive Genes in Medicago sativa L.,Journal of Plant Growth Regulation. pp. 1-14.
  • [38] Mao X., Chen S., Li A., Zhai C. & Jing R. (2014), Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis.,PLoS One. 9(1): e84359.
  • [39] Lu X., Zhang X., Duan H., Lian C., Liu C., Yin W. & Xia X. (2018), Three stress‐responsive NAC transcription factors f-rom Populus euphratica differentially regulate salt and drought tolerance in transgenic plants.,Physiologia plantarum. 162(1): 73-97.
  • [40] Lu M., Ying S., Zhang D.F., Shi Y.S., Song Y.C., Wang T.Y. & Li Y. (2012), A maize stressresponsive NAC transcription factor, ZmSNAC1, confers enhanced tolerance to dehydration in transgenic Arabidopsis.,Plant cell reports. 31(9): 1701-1711.
  • [41] Liu Z., Fu M., Li H., Chen Y., Wang L. & Liu R. (2019), Systematic analysis of NAC transcription factors in Gossypium barbadense uncovers their roles in response to Verticillium wilt.,Peer J. 7: e7995.
  • [42] Liu Z.J., Li F., Wang L.G., Liu R.Z., Ma J.J. & Fu M.C. (2018), Molecular c-haracterization of a stress-induced NAC gene, GhSNAC3, f-rom Gossypium hirsutum.,Journal of genetics. 97(2): 539-548.
  • [43] Liu X., Bartholomew E., Black K., Dong M., Zhang Y., Yang S., Cai Y., Xue S., Weng Y. & Ren H. (2018), Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber (Cucumis sativus L.).,Horticulture research. 5(1): 31.
  • [44] Liu M., Ma Z., Sun W., Huang L., Wu Q., Tang Z., Bu T., Li C. & Chen H. (2019), Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum).,BMC genomics. 20(1): 113.
  • [45] Liu G., Li X., Jin S., Liu X., Zhu L., Nie Y. & Zhang X. (2014), Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton.,PLoS One. 9(1): e86895.
  • [46] Li W., Li X., Chao J., Zhang Z., Wang W. & Guo Y. (2018), NAC family transcription factors in tobacco and their potential role in regulating leaf senescence.,Frontiers in plant science. 9: 1900.
  • [47] Lee D.K., Chung P.J., Jeong J.S., Jang G., Bang S.W., Jung H., Kim Y.S., Ha S.H., Choi Y.D. & Kim J.K. (2017), The rice Os NAC 6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance.,Plant Biotechnology Journal. 15(6): 754-764.
  • [48] Kim Y.S., Kim S.G., Park J.E., Park H.Y., Lim M.H., Chua N.H. & Park C.M. (2006), A membranebound NAC transcription factor regulates cell division in Arabidopsis.,The Plant Cell. 18(11): 3132-3144.
  • [49] Kim S.Y., Kim S.G., Kim Y.S., Seo P.J., Bae M., Yoon H.K. & Park C.M. (2007), Exploring membraneassociated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation.,Nucleic acids research. 35(1): 203-213.
  • [50] Kaneda T., Taga Y., Takai R., Iwano M., Matsui H., Takayama S., Isogai A. & Che F.S. (2009), The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death.,The EMBO journal. 28(7): 926-936.
  • [51] Jeong J.S., Kim Y.S., Baek K.H., Jung H., Ha S.H., Do Choi Y., Kim M., Reuzeau C. & Kim J.K. (2010), Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions.,Plant physiology. 153(1): 185-197.
  • [52] Jensen M.K., Hagedorn P.H., De Torres‐Zabala M., Grant M.R., Rung J.H., Collinge D.B. & Lyngkjaer M.F. (2008), Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis.,The Plant Journal. 56(6): 867-880
  • [53] Huang Q., Wang Y., Li B., Chang J., Chen M., Li K., Yang G. & He G. (2015), TaNAC29, a NAC transcription factor f-rom wheat, enhances salt and drought tolerance in transgenic Arabidopsis.,BMC plant biology. 15(1): 268.
  • [54] Hu W., Wei Y., Xia Z., Yan Y., Hou X., Zou M., Lu C., Wang W. & Peng M. (2015), Genome-wide identification and expression analysis of the NAC transcription factor family in cassava.,PloS one. 10(8): e0136993.
  • [55] Hu H., Dai M., Yao J., Xiao B., Li X., Zhang Q. & Xiong L. (2006), Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice.,Proceedings of the National Academy of Sciences. 103(35): 12987-12992.
  • [56] Hong Y., Zhang H., Huang L., Li D. & Song F. (2016), Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice.,Frontiers in plant science. 7: 4.
  • [57] He Q., Liu Y., Zhang M., Bai M., Priyadarshani S., Chai M., Chen F., Huang Y., Liu L. & Cai H. (2019), Genome-Wide Identification and Expression Analysis of the NAC Transcription Factor Family in Pineapple.,Tropical Plant Biology. pp. 1-13.
  • [58] He K., Zhao X., Chi X., Wang Y., Jia C., Zhang H., Zhou G. & Hu R. (2019), A novel Miscanthus NAC transcription factor MlNAC10 enhances drought and salinity tolerance in transgenic Arabidopsis.,Journal of plant physiology. 233: 84-93
  • [59] Guo W.-L., Wang S.-B., Chen R.-G., Chen B.-H., Du X.-H., Yin Y.-X., Gong Z.-H. & Zhang Y.-Y. (2015), C-haracterization and expression profile of CaNAC2 pepper gene.,Frontiers in plant science. 6: 755.
  • [60] Guérin C., Roche J., Allard V., Ravel C., Mouzeyar S. & Bouzidi M.F. (2019), Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.).,PLoS One. 14(3): e0213390
  • [61] Feng H., Duan X., Zhang Q., Li X., Wang B., Huang L., Wang X. & Kang Z. (2014), The target gene of tae‐miR164, a novel NAC transcription factor f-rom the NAM subfamily, negatively regulates resistance of wheat to stripe rust.,Molecular plant pathology. 15(3): 284-296
  • [62] Fang Y., Liao K., Du H., Xu Y., Song H., Li X. & Xiong L. (2015), A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice.,Journal of experimental botany. 66(21): 6803-6817.
  • [63] Evans O., Dou L., Guo Y., Pang C., Wei H., Song M., Fan S. & Yu S. (2016), GhNAC18, a novel cotton (Gossypium hirsutum L.) NAC gene, is involved in leaf senescence and diverse stress responses.,African Journal of Biotechnology. 15(24): 1233-1245.
  • [64] Ernst H.A., Olsen A.N., Skriver K., Larsen S. & Leggio L.L. (2004), Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors.,EMBO reports. 5(3): 297-303.
  • [65] Duan A.Q., Yang X.L., Feng K., Liu J.X., Xu Z.S. & Xiong A.S. (2019), Genome-wide analysis of NAC transcription factors and their response to abiotic stress in celery (Apium graveolens L.).,Computational Biology and Chemistry. 107186.
  • [66] Diao W., Snyder J., Wang S., Liu J., Pan B., Guo G., Ge W. & Dawood M. (2018), Genome-wide analyses of the NAC transcription factor gene family in pepper (Capsicum annuum L.): chromosome location, phylogeny, structure, expression patterns, cis-elements in the promoter, and interaction network.,International journal of molecular sciences. 19(4): 1028.
  • [67] Deng R., Zhao H., Xiao Y., Huang Y., Yao P., Lei Y., Li C., Chen H. & Wu Q. (2019), Cloning, c-haracterization, and expression analysis of eight stress-related NAC genes in Tartary buckwheat.,Crop Science. 59(1): 266-279.
  • [68] Chung P.J., Jung H., Do Choi Y. & Kim J.K. (2018), Genome-wide analyses of direct target genes of four rice NAC-domain transcription factors involved in drought tolerance.,BMC genomics. 19(1): 40
  • [69] Chen S., Lin X., Zhang D., Li Q., Zhao X. & Chen S. (2019), Genome-Wide Analysis of NAC Gene Family in Betula pendula. Forests. 10(9): 741.,
  • [70] Cenci A., Guignon V., Roux N. & Rouard M. (2014), Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots.,Plant molecular biology. 85(1-2): 63-80.
  • [71] Cao H., Wang L., Nawaz M.A., Niu M., Sun J., Xie J., Kong Q., Huang Y., Cheng F. & Bie Z. (2017), Ectopic expression of pumpkin NAC transcription factor CmNAC1 improves multiple abiotic stress tolerance in Arabidopsis.,Frontiers in plant science. 8: 2052.
  • [72] Banerjee A. & Roychoudhury A. (2015), WRKY proteins: signaling and regulation of expression during abiotic stress responses.,The Scientific World Journal.
  • [73] An X., Liao Y., Zhang J., Dai L., Zhang N., Wang B., Liu L. & Peng D. (2015), Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance.,Plant Growth Regulation. 76(2): 211-223.
  • [74] Alshareef N.O., Rey E., Khoury H., Tester M. & Schmöckel S.M. (2019), Genome wide identification of NAC transcription factors and their role in abiotic stress tolerance in Chenopodium quinoa.,BioRxiv. 693093.