Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,435,405
  • Công bố khoa học và công nghệ Việt Nam

Cây lương thực và cây thực phẩm

Bùi Thị Thu Hương, Nguyễn Thị Hồng, Chu Đức Hà, Hà Thị Quyến, Phạm Phương Thu, Phùng Thị Thu Hương, Lê Thị Ngọc Quỳnh(2), Nguyễn Quốc Trung, Đồng Huy Giới, Nguyễn Thanh Hải(1), Ninh Thị Thảo

Tổng quan về những tiến bộ và triển vọng trong chọn tạo giống lúa chống chịu điều kiện bất lợi nhờ công nghệ CRISPR/Cas9

Recent advances and future perspectives for the improvement of stress tolerance in rice breeding using CRISPR/Cas9

Khoa học Nông nghiệp Việt Nam

2022

1

123-132

2588-1299

Lúa gạo (Oryza sativa L.) là một trong những cây lương thực quan trọng được canh tác phổ biến trên toàn thế giới. Vai trò to lớn của lúa gạo đối với an ninh lương thực toàn cầu đã thúc đẩy các nhà nghiên cứu phát triển các giống lúa mới với các đặc tính nông học được cải thiện, như khả năng chống chịu stress sinh học và phi sinh học. Hệ thống chỉnh sửa gen CRISPR/Cas9 mang đến một chiến lược đầy hứa hẹn để cải thiện đặc tính nông học của nhiều loại cây trồng nhờ tính hiệu quả, dễ sử dụng và độ chính xác cao. Bài viết này thảo luận về các ứng dụng của CRISPR/Cas9 trong cải tạo các giống lúa thích nghi tốt hơn với điều kiện môi trường bất lợi. Hàng loạt các gen chức năng và gen điều hòa liên quan đến tính kháng bệnh (bạc lá và đạo ôn), kháng thuốc trừ cỏ và chống chịu điều kiện bất thuận (mặn, hạn hán, lạnh) ở lúa đã được phân tích chức năng thông qua hệ thống CRISPR/Cas9. Một số hạn chế và ưu điểm khi áp dụng kỹ thuật này trên cây lúa cũng được phân tích. Kết quả của nghiên cứu này đã cung cấp một cái nhìn tổng thể về công cụ chỉnh sửa gen, từ đó định hướng ứng dụng trong nghiên cứu các giống cây trồng ứng phó với biến đổi khí hậu ở Việt Nam.

Rice (Oryza sativa L.) is one of the most important staple crops that is widely cultivated in the world. Due to the critical role of rice in the global food security, great efforts have been made in order to develop new rice varieties with good agronomic traits, such as biotic and abiotic stress tolerance. The CRISPR/Cas9 has emerged as a promising system for the improvement of various traits of crop plants because of its efficiency, simplicity, and versatility. In this mini review, we discussed the applications of the CRISPR/Cas9 gene editing system to improve a wide range of traits in rice varieties adapted to unfavorable conditions. Specifically, a number of functional and regulatory genes that are associated with diseases (rice blast, bacterial blight) and pesticide resistance and abiotic stress (salinity, drought, and cold) tolerance have been functionally c-haracterized via the mutants produced by the CRISPR/Cas9 system. Additionally, the advances and limitations of using CRISPR/Cas9 system in rice plants were discussed. Taken together, our paper could provide a solid foundation for further application of genome editing tools in plant breeding for tackling climate change.

TTKHCNQG, CTv 169

  • [1] Zhou J.P., Xin X.H., He Y., Chen H.Q., Li Q., Tang X., Zhong Z.H., Deng K.J., Zheng X.L., Akher S.A., Cai G.Z., Qi Y.P. & Zhang Y (2018), Multiplex QTL editing of grain-related genes improves yield in elite rice varieties,Plant Cell Rep. 38(4): 475-485.
  • [2] Zhou J., Peng Z., Long J., Sosso D., Liu B., Eom J. S., Huang S., Liu S., Vera Cruz C., F-rommer W.B., White F.F. & Yang B (2015), Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice,The Plant journal : for cell and molecular biology. 82(4): 632-643.
  • [3] Zhao H., Wang X., Jia Y., Minkenberg B., Wheatley M., Fan J., Jia M.H., Famoso A., Edwards J.D., Wamishe Y., Valent B., Wang G.L. & Yang Y (2018), The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance,Nature communications. 9(1): 2039.
  • [4] Zeng X., Luo Y., Vu N.T.Q., Shen S., Xia K. & Zhang M. (2020), CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty,BMC Plant Biology. 20.
  • [5] Yu S., Ali J., Zhang C., Li Z. & Zhang Q. (2020), Genomic Breeding of Green Super Rice Varieties and Their Deployment in Asia and Africa,Theor Appl Genet. 133(5): 1427-1442.
  • [6] Yu Q., Jalaludin A., Han H., Chen M., Sammons R.D. & Powles S.B. (2015), Evolution of a double amino acid substitution in the 5- enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance,Plant physiology. 167(4): 1440-1447.
  • [7] Yoon Y., Seo D.H., Shin H., Kim H.J., Kim C.M. & Jang G. (2020), The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants,Agronomy. 10(6): 788
  • [8] Yin X., Biswal A.K., Dionora J., Perdigon K.M., Balahadia C.P., Mazumdar S., Chater C., Lin H.C., Coe R.A., Kretzschmar T., Gray J.E., Quick P.W. & Bandyopadhyay A (2017), CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.,Plant Cell Rep. 36(5): 745-757.
  • [9] Woo J.W., Kim J., Kwon S.I., Corvalán C., Cho S.W., Kim H., Kim S.G., Kim S.T., Choe S. & Kim J.S. (2015), DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins.,Nature biotechnology. 33(11): 1162-1164.
  • [10] Wang M., Wang S., Liang Z., Shi W., Gao C. & Xia G (2018), F-rom genetic stock to genome editing: gene exploitation in wheat.,Trends in Biotechnology. 36: 160-172.
  • [11] Wang F., Wang C., Liu P., Lei C., Hao W., Gao Y., Liu Y.G. & Zhao K. (2016), Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PloS one. 11(4): e0154027.,
  • [12] Te Z., Lin C.Y. & Shen Z.C (2011), Development of Transgenic Glyphosate-Resistant Rice with G6 Gene Encoding 5-Enolpyruvylshikimate3Phosphate Synthase.,Agricultural Sciences in China. 10(9): 1307-1312.
  • [13] Svitashev S., Schwartz C., Lenderts B., Young J.K. & Mark Cigan A (2016), Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes.,Nature Communications. 7: 13274-13274.
  • [14] Sun Y., Zhang X., Wu C., He Y., Ma Y., Hou H., Guo X., Du W., Zhao Y. & Xia L. (2016), Engineering Herbicide-Resistant Rice Plants through CRISPR/Cas9-Mediated Homologous Recombination of Acetolactate Synthase.,Molecular plant. 9(4): 628-631
  • [15] Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., Ezura H., Nishida K., Ariizumi T. & Kondo A. (2017), , Nishida K., Ariizumi T. & Kondo A. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion,Nature Biotechnology. 35: 441-443
  • [16] Shimatani Z., Fujikura U., Ishii H., Matsui Y., Suzuki M., Ueke Y., Taoka K.I., Terada R., Nishida K. & Kondo A. (2018), Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice,Plant physiology and biochemistry. 131: 78-83.
  • [17] Shen C., Que Z., Xia Y., Tang N., Li D., He R. & Cao M (2017), Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice,Journal of Plant Biology. 60: 539-547.
  • [18] Sarmast M. (2016), Genetic transformation and somaclonal variation in conifers.,Plant Biotechnology Reports. 10: 309-325.
  • [19] Oz M.T, Altpeter A., Karan R., Merotto A. & Altpeter F. (2021), CRISPR/Cas9-Mediated Multi-Allelic Gene Targeting in Sugarcane Confers Herbicide Tolerance,Frontier in Genome Editing. 3: 673566
  • [20] Nawaz G., Usman B., Peng H., Zhao N., Yuan R., Liu Y. & Li R (2020), Knockout of pi21 by crispr/cas9 and itraq-based proteomic analysis of mutants revealed new insights into M,oryzae resistance in elite rice line. Genes. 11(7): 73
  • [21] Minkenberg B., Xie K. & Yang Y (2017), Discovery of rice essential genes by c-haracterizing a CRISPR-edited mutation of closely related rice MAP kinase genes,The Plant journal : for cell and molecular biology. 89(3): 636-648.
  • [22] Meng X., Yu H., Zhang Y., Zhuang F., Song X., Gao S., Gao C. & Li J. (2017), Construction of a Genome-Wide Mutant Library in Rice Using CRISPR/Cas9,Mol Plant. 10(9): 1238-1241
  • [23] Malnoy M., Viola R., Jung M.H., Koo O.J., Kim S., Kim J.S., Velasco R. & Nagamangala K.C. (2016), DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins.,Front Plant Sci. 7: 1904.
  • [24] Ma J., Chen J., Wang M., Ren Y., Wang S., Lei C., Cheng Z. & Sodmergen (2018), Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice.,Journal of experimental botany. 69(5): 1051-1064.
  • [25] Lou D., Wang H., Liang G. & Yu D. (2017), OsSAPK2 Confers Abscisic Acid Sensitivity and Tolerance to Drought Stress in Rice,Frontiers in plant science. 8: 993.
  • [26] Liu D., Chen X., Liu J., Ye J. & Guo Z. (2012), The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance.,Journal of experimental botany. 63(10): 3899-3911
  • [27] Liang Z., Chen K., Zhang Y., Liu J., Yin K., Qiu J.L. & Gao C. (2018), Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins.,Nature Protocols. 13: 413-430.
  • [28] Liang Z., Chen K., Tingdong L., Zhang Y., Wang Y., Zhao Q., Liu J., Huawei Z., Liu C., Ran Y. & Gao C. (2017), Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes.,Nature Communications. 8: 14261.
  • [29] Li M., Li X., Zhou Z., Wu P., Fang M., Pan X., Lin Q., Luo W., Wu G. & Li H. (2016), Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System,Frontiers in plant science
  • [30] Li J., Zhang X., Sun Y., Zhang J., Du W., Guo X., Li S., Zhao Y. & Xia L. (2018), Efficient allelic replacement in rice by gene editing: A case study of the NRT1.1B gene,Journal of integrative plant biology. 60(7): 536-540
  • [31] Li J., Meng X., Zong Y., Chen K., Zhang H., Liu J., Li J. & Gao C. (2016), Gene replacements and in-sertions in rice by intron targeting using CRISPR-Cas9.,Nature plants. 2: 16139
  • [32] Lenaerts B., Collard B.C.Y. & Demont M (2019), Review: Improving global food security through accelerated plant breeding.,Plant science : an international journal of experimental plant biology. 287: 110207-110207
  • [33] Klap C., Yeshayahou E., Bolger A.M., Arazi T., Gupta S.K., Shabtai S., Usadel B., Salts Y. & Barg R. (2017), Tomato facultative parthenocarpy results f-rom SlAGAMOUS-LIKE 6 loss of function.,Plant Biotechnology Journal. 15: 634-647.
  • [34] Jung J.H. & Seo Y. (2017), Challenges in wide implementation of genome editing for crop improvement,Journal of Crop Science and Biotechnology. 20(2): 129-135.
  • [35] Jiang W., Zhou H., Bi H., F-romm M., Yang B. & Weeks D.P. (2013), Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice.,Nucleic acids research. 41(20): e188.
  • [36] Jiang W., Bikard D., Cox D., Zhang F. & Marraffini L.A (2013), RNA-guided editing of bacterial genomes using CRISPR-Cas systems,Nature Biotechnology. 31(3): 233-239
  • [37] Janni M., Gullì M., Maestri E., Marmiroli M., Valliyodan B., Nguyen H. T. & Marmiroli N. (2020), Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity,Journal of Experimental Botany. 71(13): 3780-3802
  • [38] Inui H., Shiota N., Ido Y., Inoue T., Hirose S., Kawahigashi H., Ohkawa Y. & Ohkawa H. (2001), Herbicide Metabolism and Tolerance in the Transgenic Rice Plants Expressing Human CYP2C9 and CYP2C19,Pesticide Biochemistry and Physiology. 71(3): 156-169
  • [39] Huy Le, Nhung Hong Nguyen, Dong Thị Ta, Thao Nhu Thi Le, Thao Phuong Bui, Ngoc Thu Le, Cuong Xuan Nguyen, Hardy Rolletschek, Gary Stacey, Minviluz G. Stacey, Ngoc Bich Pham, Phat Tien Do & Ha Hoang Chu (2020), CRISPR/Cas9- Mediated Knockout of Galactinol SynthaseEncoding Genes Reduces Raffinose Family Oligosacc-haride Levels in Soybean Seeds.,Frontiers in Plant Science. 11: 612942
  • [40] He Y., Zhu M., Wang L., Wu J., Wang Q., Wang R. & Zhao Y. (2019), Improvements of TKC Technology Accelerate Isolation of TransgeneFree CRISPR/Cas9-Edited Rice Plants.,Rice ScienceScience. 26(2): 109-117
  • [41] He Y., Zhu M., Wang L., Wu J., Wang Q., Wang R. & Zhao Y. (2018), Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants,Molecular plant. 11(9): 1210-1213.
  • [42] Hamada H., Liu Y., Nagira Y., Miki R., Taoka N. & Imai R. (2018), Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat,Scientific reports. 8: 14422
  • [43] Fartyal D., Agarwal A., James D., Borphukan B., Ram B., Sheri V., Agrawal P.K., Ac-hary V.M.M. & Reddy M.K (2018), Developing dual herbicide tolerant transgenic rice plants for sustainable weed management.,Scientific reports. 8: 11598
  • [44] Duan Y.B., Li J., Qin R.Y., Xu R.F., Li H., Yang Y.C., Ma H., Li L., Wei P.C. & Yang J.B. (2016), Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis.,Plant molecular biology. 90(1-2): 49-62.
  • [45] Dong Y., Jin X., Tang Q., Zhang X., Yang J., Liu X., Cai J., Zhang X., Wang X. & Wang Z. (2017), Development and Event-specific Detection of Transgenic Glyphosate-resistant Rice Expressing the G2-EPSPS Gene.,Frontiers in plant science. 8(885).
  • [46] Chen J.F., Zhao Z.X., Li Y., Li T.T., Zhu Y., Yang X.M., Zhou S.X., Wang H., Zhao J. Q. & Pu M. (2021), Fine-tuning roles of Osa-miR159a in rice immunity against Magnaporthe oryzae and developmen,Rice. 14(1): 1-11
  • [47] Chao L., Zong Y., Wang Y., Jin S., Zhang D., Song Q., Zhang R. & Gao C. (2018), Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion,Genome Biology. 19.
  • [48] Altpeter F. & Springer N.M. (2016), Advancing Crop Transformation in the Era of Genome Editing,The Plant Cell. 28(7): 1510-1520.