



- Công bố khoa học và công nghệ Việt Nam
Cây lương thực và cây thực phẩm
Bùi Thị Thu Hương, Nguyễn Thị Hồng, Chu Đức Hà, Hà Thị Quyến, Phạm Phương Thu, Phùng Thị Thu Hương, Lê Thị Ngọc Quỳnh(2), Nguyễn Quốc Trung, Đồng Huy Giới, Nguyễn Thanh Hải(1), Ninh Thị Thảo
Tổng quan về những tiến bộ và triển vọng trong chọn tạo giống lúa chống chịu điều kiện bất lợi nhờ công nghệ CRISPR/Cas9
Recent advances and future perspectives for the improvement of stress tolerance in rice breeding using CRISPR/Cas9
Khoa học Nông nghiệp Việt Nam
2022
1
123-132
2588-1299
TTKHCNQG, CTv 169
- [1] Zhou J.P., Xin X.H., He Y., Chen H.Q., Li Q., Tang X., Zhong Z.H., Deng K.J., Zheng X.L., Akher S.A., Cai G.Z., Qi Y.P. & Zhang Y (2018), Multiplex QTL editing of grain-related genes improves yield in elite rice varieties,Plant Cell Rep. 38(4): 475-485.
- [2] Zhou J., Peng Z., Long J., Sosso D., Liu B., Eom J. S., Huang S., Liu S., Vera Cruz C., F-rommer W.B., White F.F. & Yang B (2015), Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice,The Plant journal : for cell and molecular biology. 82(4): 632-643.
- [3] Zhao H., Wang X., Jia Y., Minkenberg B., Wheatley M., Fan J., Jia M.H., Famoso A., Edwards J.D., Wamishe Y., Valent B., Wang G.L. & Yang Y (2018), The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance,Nature communications. 9(1): 2039.
- [4] Zeng X., Luo Y., Vu N.T.Q., Shen S., Xia K. & Zhang M. (2020), CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty,BMC Plant Biology. 20.
- [5] Yu S., Ali J., Zhang C., Li Z. & Zhang Q. (2020), Genomic Breeding of Green Super Rice Varieties and Their Deployment in Asia and Africa,Theor Appl Genet. 133(5): 1427-1442.
- [6] Yu Q., Jalaludin A., Han H., Chen M., Sammons R.D. & Powles S.B. (2015), Evolution of a double amino acid substitution in the 5- enolpyruvylshikimate-3-phosphate synthase in Eleusine indica conferring high-level glyphosate resistance,Plant physiology. 167(4): 1440-1447.
- [7] Yoon Y., Seo D.H., Shin H., Kim H.J., Kim C.M. & Jang G. (2020), The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants,Agronomy. 10(6): 788
- [8] Yin X., Biswal A.K., Dionora J., Perdigon K.M., Balahadia C.P., Mazumdar S., Chater C., Lin H.C., Coe R.A., Kretzschmar T., Gray J.E., Quick P.W. & Bandyopadhyay A (2017), CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice.,Plant Cell Rep. 36(5): 745-757.
- [9] Woo J.W., Kim J., Kwon S.I., Corvalán C., Cho S.W., Kim H., Kim S.G., Kim S.T., Choe S. & Kim J.S. (2015), DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins.,Nature biotechnology. 33(11): 1162-1164.
- [10] Wang M., Wang S., Liang Z., Shi W., Gao C. & Xia G (2018), F-rom genetic stock to genome editing: gene exploitation in wheat.,Trends in Biotechnology. 36: 160-172.
- [11] Wang F., Wang C., Liu P., Lei C., Hao W., Gao Y., Liu Y.G. & Zhao K. (2016), Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PloS one. 11(4): e0154027.,
- [12] Te Z., Lin C.Y. & Shen Z.C (2011), Development of Transgenic Glyphosate-Resistant Rice with G6 Gene Encoding 5-Enolpyruvylshikimate3Phosphate Synthase.,Agricultural Sciences in China. 10(9): 1307-1312.
- [13] Svitashev S., Schwartz C., Lenderts B., Young J.K. & Mark Cigan A (2016), Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes.,Nature Communications. 7: 13274-13274.
- [14] Sun Y., Zhang X., Wu C., He Y., Ma Y., Hou H., Guo X., Du W., Zhao Y. & Xia L. (2016), Engineering Herbicide-Resistant Rice Plants through CRISPR/Cas9-Mediated Homologous Recombination of Acetolactate Synthase.,Molecular plant. 9(4): 628-631
- [15] Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., Ezura H., Nishida K., Ariizumi T. & Kondo A. (2017), , Nishida K., Ariizumi T. & Kondo A. (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion,Nature Biotechnology. 35: 441-443
- [16] Shimatani Z., Fujikura U., Ishii H., Matsui Y., Suzuki M., Ueke Y., Taoka K.I., Terada R., Nishida K. & Kondo A. (2018), Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice,Plant physiology and biochemistry. 131: 78-83.
- [17] Shen C., Que Z., Xia Y., Tang N., Li D., He R. & Cao M (2017), Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice,Journal of Plant Biology. 60: 539-547.
- [18] Sarmast M. (2016), Genetic transformation and somaclonal variation in conifers.,Plant Biotechnology Reports. 10: 309-325.
- [19] Oz M.T, Altpeter A., Karan R., Merotto A. & Altpeter F. (2021), CRISPR/Cas9-Mediated Multi-Allelic Gene Targeting in Sugarcane Confers Herbicide Tolerance,Frontier in Genome Editing. 3: 673566
- [20] Nawaz G., Usman B., Peng H., Zhao N., Yuan R., Liu Y. & Li R (2020), Knockout of pi21 by crispr/cas9 and itraq-based proteomic analysis of mutants revealed new insights into M,oryzae resistance in elite rice line. Genes. 11(7): 73
- [21] Minkenberg B., Xie K. & Yang Y (2017), Discovery of rice essential genes by c-haracterizing a CRISPR-edited mutation of closely related rice MAP kinase genes,The Plant journal : for cell and molecular biology. 89(3): 636-648.
- [22] Meng X., Yu H., Zhang Y., Zhuang F., Song X., Gao S., Gao C. & Li J. (2017), Construction of a Genome-Wide Mutant Library in Rice Using CRISPR/Cas9,Mol Plant. 10(9): 1238-1241
- [23] Malnoy M., Viola R., Jung M.H., Koo O.J., Kim S., Kim J.S., Velasco R. & Nagamangala K.C. (2016), DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins.,Front Plant Sci. 7: 1904.
- [24] Ma J., Chen J., Wang M., Ren Y., Wang S., Lei C., Cheng Z. & Sodmergen (2018), Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice.,Journal of experimental botany. 69(5): 1051-1064.
- [25] Lou D., Wang H., Liang G. & Yu D. (2017), OsSAPK2 Confers Abscisic Acid Sensitivity and Tolerance to Drought Stress in Rice,Frontiers in plant science. 8: 993.
- [26] Liu D., Chen X., Liu J., Ye J. & Guo Z. (2012), The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance.,Journal of experimental botany. 63(10): 3899-3911
- [27] Liang Z., Chen K., Zhang Y., Liu J., Yin K., Qiu J.L. & Gao C. (2018), Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins.,Nature Protocols. 13: 413-430.
- [28] Liang Z., Chen K., Tingdong L., Zhang Y., Wang Y., Zhao Q., Liu J., Huawei Z., Liu C., Ran Y. & Gao C. (2017), Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes.,Nature Communications. 8: 14261.
- [29] Li M., Li X., Zhou Z., Wu P., Fang M., Pan X., Lin Q., Luo W., Wu G. & Li H. (2016), Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in Rice Using a CRISPR/Cas9 System,Frontiers in plant science
- [30] Li J., Zhang X., Sun Y., Zhang J., Du W., Guo X., Li S., Zhao Y. & Xia L. (2018), Efficient allelic replacement in rice by gene editing: A case study of the NRT1.1B gene,Journal of integrative plant biology. 60(7): 536-540
- [31] Li J., Meng X., Zong Y., Chen K., Zhang H., Liu J., Li J. & Gao C. (2016), Gene replacements and in-sertions in rice by intron targeting using CRISPR-Cas9.,Nature plants. 2: 16139
- [32] Lenaerts B., Collard B.C.Y. & Demont M (2019), Review: Improving global food security through accelerated plant breeding.,Plant science : an international journal of experimental plant biology. 287: 110207-110207
- [33] Klap C., Yeshayahou E., Bolger A.M., Arazi T., Gupta S.K., Shabtai S., Usadel B., Salts Y. & Barg R. (2017), Tomato facultative parthenocarpy results f-rom SlAGAMOUS-LIKE 6 loss of function.,Plant Biotechnology Journal. 15: 634-647.
- [34] Jung J.H. & Seo Y. (2017), Challenges in wide implementation of genome editing for crop improvement,Journal of Crop Science and Biotechnology. 20(2): 129-135.
- [35] Jiang W., Zhou H., Bi H., F-romm M., Yang B. & Weeks D.P. (2013), Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice.,Nucleic acids research. 41(20): e188.
- [36] Jiang W., Bikard D., Cox D., Zhang F. & Marraffini L.A (2013), RNA-guided editing of bacterial genomes using CRISPR-Cas systems,Nature Biotechnology. 31(3): 233-239
- [37] Janni M., Gullì M., Maestri E., Marmiroli M., Valliyodan B., Nguyen H. T. & Marmiroli N. (2020), Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity,Journal of Experimental Botany. 71(13): 3780-3802
- [38] Inui H., Shiota N., Ido Y., Inoue T., Hirose S., Kawahigashi H., Ohkawa Y. & Ohkawa H. (2001), Herbicide Metabolism and Tolerance in the Transgenic Rice Plants Expressing Human CYP2C9 and CYP2C19,Pesticide Biochemistry and Physiology. 71(3): 156-169
- [39] Huy Le, Nhung Hong Nguyen, Dong Thị Ta, Thao Nhu Thi Le, Thao Phuong Bui, Ngoc Thu Le, Cuong Xuan Nguyen, Hardy Rolletschek, Gary Stacey, Minviluz G. Stacey, Ngoc Bich Pham, Phat Tien Do & Ha Hoang Chu (2020), CRISPR/Cas9- Mediated Knockout of Galactinol SynthaseEncoding Genes Reduces Raffinose Family Oligosacc-haride Levels in Soybean Seeds.,Frontiers in Plant Science. 11: 612942
- [40] He Y., Zhu M., Wang L., Wu J., Wang Q., Wang R. & Zhao Y. (2019), Improvements of TKC Technology Accelerate Isolation of TransgeneFree CRISPR/Cas9-Edited Rice Plants.,Rice ScienceScience. 26(2): 109-117
- [41] He Y., Zhu M., Wang L., Wu J., Wang Q., Wang R. & Zhao Y. (2018), Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants,Molecular plant. 11(9): 1210-1213.
- [42] Hamada H., Liu Y., Nagira Y., Miki R., Taoka N. & Imai R. (2018), Biolistic-delivery-based transient CRISPR/Cas9 expression enables in planta genome editing in wheat,Scientific reports. 8: 14422
- [43] Fartyal D., Agarwal A., James D., Borphukan B., Ram B., Sheri V., Agrawal P.K., Ac-hary V.M.M. & Reddy M.K (2018), Developing dual herbicide tolerant transgenic rice plants for sustainable weed management.,Scientific reports. 8: 11598
- [44] Duan Y.B., Li J., Qin R.Y., Xu R.F., Li H., Yang Y.C., Ma H., Li L., Wei P.C. & Yang J.B. (2016), Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis.,Plant molecular biology. 90(1-2): 49-62.
- [45] Dong Y., Jin X., Tang Q., Zhang X., Yang J., Liu X., Cai J., Zhang X., Wang X. & Wang Z. (2017), Development and Event-specific Detection of Transgenic Glyphosate-resistant Rice Expressing the G2-EPSPS Gene.,Frontiers in plant science. 8(885).
- [46] Chen J.F., Zhao Z.X., Li Y., Li T.T., Zhu Y., Yang X.M., Zhou S.X., Wang H., Zhao J. Q. & Pu M. (2021), Fine-tuning roles of Osa-miR159a in rice immunity against Magnaporthe oryzae and developmen,Rice. 14(1): 1-11
- [47] Chao L., Zong Y., Wang Y., Jin S., Zhang D., Song Q., Zhang R. & Gao C. (2018), Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion,Genome Biology. 19.
- [48] Altpeter F. & Springer N.M. (2016), Advancing Crop Transformation in the Era of Genome Editing,The Plant Cell. 28(7): 1510-1520.