Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  21,787,536
  • Công bố khoa học và công nghệ Việt Nam

Công nghệ gen; nhân dòng vật nuôi;

Nguyễn Trung Đức(1), Phạm Quang Tuân, Nguyễn Thị Nguyệt Anh, Nguyễn Văn Mười, Phùng Danh Huân, Vũ Hải, Trần Văn Quang(2), Vũ Thị Xuân Bình, Vũ Văn Liết

Tổng quan phương pháp đánh giá kiểu hình hiệu năng cao trên cây trồng: Tiến trình phát triển và tiềm năng ứng dụng cho Việt Nam

A review of high-throughput crop phenotyping: Progress and application for Vietnam

Khoa học Nông nghiệp Việt Nam

2022

1

98-112

2588-1299

Năng suất cây trồng cần phải tăng gấp đôi hiện tại để đáp ứng nhu cầu của 10 tỉ người tới năm 2050 là một thách thức toàn cầu, đòi hỏi các phương pháp chọn tạo giống mới với hiệu năng và độ chính xác cao. Với sự phát triển của khoa học máy tính, cảm biến hình ảnh, học máy, trí tuệ nhân tạo ngày nay đã giúp các nhà khoa học đánh giá chính xác kiểu hình trong sự tương tác giữa kiểu gen với môi trường ngày càng đa dạng và phức tạp. Đây là nền tảng ra đời kỷ nguyên đánh giá kiểu hình thế hệ mới: phương pháp đánh giá kiểu hình cây trồng hiệu năng cao (HTP) kết hợp đa hình ở nhiều cấp độ từ tế bào, cơ quan, cá thể đến cấp độ quần thể cây trồng. Việt Nam là một đất nước thuần nông đang phát triển, chịu ảnh hưởng mạnh của biến đổi khí hậu. Do vậy, việc áp dụng các thành tựu từ phương pháp HTP góp phần rút ngắn thời gian đánh giá, chọn tạo, tạo ra nhiều giống mới thích ứng cao với sự biến đổi khí hậu ngày càng khó lường như hiện nay. Nghiên cứu này trình bày tóm tắt sự ra đời, phát triển, những thách thức đang gặp phải của phương pháp HTP và tiềm năng ứng dụng cho Việt Nam.

Double increase in food production to feed 10 billion people sustainably by 2050 is a global challenge, which requires novel breeding methods with high-throughput and accuracy. The development of computer science, image sensors, machine learning, and artificial intelligence provided scientists with new methods for quantitative evaluation of plant phenotypes in the interaction between genotype and environment. It has generated a new area for quantitative analysis of phenotypes: high-throughput crop phenotyping (HTP) combining multidimensional f-rom cellular, tissue, organ, individual to population level. Vietnam is a developing country, agriculture still plays a vital role in economic activity and is strongly influenced by climate change. Therefore, the application of achievements f-rom HTP technology will contribute to shorten the time of evaluation and breeding cycle and develop new resilience varieties highly adaptable to climate change. This study highlighted the history, development and challenges of HTP and its potential application for Vietnam.

TTKHCNQG, CTv 169

  • [1] Zhao C., Zhang Y., Du J., Guo X., Wen W., Gu S., Wang J. & Fan J. (2019), Crop Phenomics: Current Status and Perspectives,Frontiers in Plant Science. 10(714)
  • [2] Yang W., Guo Z., Huang C., Duan L., Chen G., Jiang N., Fang W., Feng H., Xie W., Lian X., Wang G., Luo Q., Zhang Q., Liu Q. & Xiong L. (2014), Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice,Nature Communications. 5: 5087.
  • [3] Yang W., Feng H., Zhang X., Zhang J., Doonan J.H., Batchelor W.D., Xiong L. & Yan J. (2020), Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives.,Molecular Plant. 13(2): 187-214
  • [4] Whan A.P., Smith A.B., Cavanagh C.R., Ral J.P.F., Shaw L.M., Howitt C.A. & Bischof L. (2014), GrainScan: a low cost, fast method for grain size and colour measurements.,Plant Methods. 10(1): 23
  • [5] Wal-ter A., Liebisch F. & Hund A. (2015), Plant phenotyping: f-rom bean weighing to image analysis.,Plant Methods. 11(1): 14
  • [6] Varshney R.K., Bohra A., Roorkiwal M., Barmukh R., Cowling W.A., Chitikineni A., Lam H.M., Hickey L.T., Croser J.S., Bayer P.E., Edwards D., Crossa J., Weckwerth W., Millar H., Kumar A., Bevan M.W. & Siddique K.H.M. (2021), Fast-forward breeding for a food-secure world,Trends in Genetics. https://doi.org/10.1016/j.tig.2021.08.002.
  • [7] Vadez V., Kholová J., Hummel G., Zhokhavets U., Gupta S.K. & Hash C.T (2015), LeasyScan: a novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget.,Journal of Experimental Botany. 66(18): 5581-5593.
  • [8] Tuberosa R. (2012), Phenotyping for drought tolerance of crops in the genomics era.,Frontiers in Physiology. 3(347).
  • [9] Tardieu F., Cabrera-Bosquet L., Pridmore T. & Bennett M. (2017), Plant Phenomics, F-rom Sensors to Knowledge.,Current Biology. 27(15): R770-R783.
  • [10] Tanger P., Klassen S., Mojica J.P., Lovell J.T., Moyers B.T., Baraoidan M., Naredo M.E.B., Mcnally K.L., Poland J., Bush D.R., Leung H., Leach J.E. & Mckay J.K. (2017), Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice,Scientific Reports. 7: 42839.
  • [11] Tanabata T., Shibaya T., Hori K., Ebana K. & Yano M (2012), SmartGrain: High-Throughput Phenotyping Software for Measuring Seed Shape through Image Analysis Plant Physiology,160(4): 1871-1880.
  • [12] Seethepalli A., Guo H., Liu X., Griffiths M., Almtarfi H., Li Z., Liu S., Zare A., Fritschi F. B., Blancaflor E.B., Ma X.F. & York L.M. (2020), RhizoVision Crown: An Integrated Hardware and Software Platform for Root Crown Phenotyping,Plant Phenomics. p. 3074916.
  • [13] Schork N.J. (1997), Genetics of Complex Disease.,American Journal of Respiratory and Critical Care Medicine. 156(4): S103-S109.
  • [14] Rosero A., Granda L., Pérez J.L., Rosero D., BurgosPaz W., Martínez R., Morelo J., Pastrana I., Burbano E. & Morales A. (2019), Morphometric and colourimetric tools to dissect morphological diversity: an application in sweet potato [Ipomoea batatas (L.) Lam.].,Genetic Resources and Crop Evolution. 66(6): 1257-1278.
  • [15] Reynolds D., Baret F., Welcker C., Bostrom A., Ball J., Cellini F., Lorence A., Chawade A., Khafif M., Noshita K., Mueller-Linow M., Zhou J. & Tardieu F. (2019), What is cost-efficient phenotyping? Optimizing costs for different scenarios,Plant Science. 282: 14-22.
  • [16] Pound M.P., French A.P., Murchie E.H. & Pridmore T.P. (2014), Automated Recovery of ThreeDimensional Models of Plant Shoots f-rom Multiple Color Images Plant Physiology 166(4): 1688-1698.,
  • [17] Pautasso M. (2013), Ten simple rules for writing a literature review,PLOS Computational Biology. 9(7): e1003149.
  • [18] Nguyen T.D. (2020), High-throughput phenotyping of rice genotypes for nitrogen use efficiency,ICARIndian Agricultural Research Institute, New Delhi. Master Thesis: T-10424.
  • [19] Miller N.D., Haase N. J., Lee J., Kaeppler S.M., De Leon N. & Spalding E.P. (2017), A robust, highthroughput method for computing maize ear, cob, and kernel attributes automatically f-rom images,The Plant Journal. 89(1): 169-178.
  • [20] Makanza R., Zaman-Allah M., Cairns J. E., Eyre J., Burgueño J., Pacheco Á., Diepenbrock C., Magorokosho C., Tarekegne A., Olsen M. & Prasanna B. M. (2018), High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging,Plant Methods. 14(1): 49.
  • [21] Lynch J.P. (2019), Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture,New Phytologist. 223(2): 548-564
  • [22] Lobet G., Pagès L. & Draye X (2011), A Novel ImageAnalysis Toolbox Enabling Quantitative Analysis of Root System Architecture Plant Physiology. 157(1): 29-39.,
  • [23] Knecht A.C., Campbell M.T., Caprez A., Swanson D.R. & Walia H (2016), Image Harvest: an opensource platform for high-throughput plant image processing and analysis,Journal of Experimental Botany. 67(11): 3587-3599
  • [24] Klukas C., Chen D. & Pape J.M. (2014), Integrated Analysis Platform: An Open-Source Information System for High-Throughput Plant Phenotyping.,Plant Physiol. 165(2): 506-518.
  • [25] Johannsen W. (1911), The genotype conception of heredity.,International Journal of Epidemiology. 43(4): 989-1000.
  • [26] Hickey L.T., Hafeez N.A., Robinson H., Jackson S.A., Leal-Bertioli S.C.M., Tester M., Gao C., Godwin I.D., Hayes B.J. & Wulff B.B.H. (2019), Breeding crops to feed 10 billion.,Nature Biotechnology. 37(7): 744-754.
  • [27] Hartmann A., Czauderna T., Hoffmann R., Stein N. & Schreiber F. (2011), HTPheno: An image analysis pipeline for high-throughput plant phenotyping.,BMC Bioinformatics. 12(1): 148
  • [28] Gehan M.A., Fahlgren N., Abbasi A., Berry J.C., Callen S.T., Chavez L., Doust A.N., Feldman M.J., Gilbert K.B., Hodge J.G., Hoyer J.S., Lin A., Liu S., Lizárraga C., Lorence A., Miller M., Platon E., Tessman M. & Sax T. (2017), PlantCV v2: Image analysis software for high-throughput plant phenotyping,Peer J. 5: e4088.
  • [29] Furbank R.T. & Tester M. (2011), Phenomics – technologies to relieve the phenotyping bottleneck.,Trends in Plant Science. 16(12): 635-644.
  • [30] Fiorani F. & Schurr U. (2013), Future Scenarios for Plant Phenotyping.,Annual Review of Plant Biology. 64(1): 267-291.
  • [31] Falk K.G., Jubery T.Z., O’rourke J.A., Singh A., Sarkar S., Ganapathysubramanian B. & Singh A.K. (2020), Soybean Root System Architecture Trait Study through Genotypic, Phenotypic, and ShapeBased Clusters,Plant Phenomics. 2020: 1925495.
  • [32] Falk K.G., Jubery T.Z., Mirnezami S.V., Parmley K.A., Sarkar S., Singh A., Ganapathysubramanian B. & Singh A. K. (2020), Computer vision and machine learning enabled soybean root phenotyping pipeline. Plant Methods. 16(1): 5.,
  • [33] Enders T.A., St. Dennis S., Oakland J., Callen S.T., Gehan M.A., Miller N.D., Spalding E.P., Springer N.M. & Hirsch C.D. (2019), Classifying coldstress responses of inbred maize seedlings using RGB imaging.,Plant Direct. 3(1): e00104.
  • [34] Deery D.M., Rebetzke G.J., Jimenez-Berni J.A., James R.A., Condon A.G., Bovill W.D., Hutchinson P., Scarrow J., Davy R. & Furbank R.T. (2016), Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography,Frontiers in Plant Science. 7(1808).
  • [35] Danilevicz M.F., Bayer P.E., Nestor B.J., Bennamoun M. & Edwards D. (2021), Resources for imagebased high-throughput phenotyping in crops and data sharing challenges.,Plant Physiology. 10.1093/plphys/kiab301.
  • [36] Crowell S., Korniliev P., Falcão A., Ismail A., Gregorio G., Mezey J. & Mccouch S. (2016), Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous traitspecific QTL clusters,Nature Communications. 7(1): 10527.
  • [37] Crowell S., Falcão A.X., Shah A., Wilson Z., Greenberg A.J. & Mccouch S.R. (2014), HighResolution Inflorescence Phenotyping Using a Novel Image-Analysis Pipeline, PANorama,Plant Physiology. 165(2): 479-495.
  • [38] Cobb J.N., Declerck G., Greenberg A., Clark R. & Mccouch S (2013), Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement.,Theoretical and Applied Genetics. 126(4): 867-887
  • [39] Carroll A.A., Clarke J., Fahlgren N., Gehan M.A., Lawrence-Dill C.J. & Lorence A (2019), NAPPN: Who We Are, Whe-re We Are Going, and Why You Should Join Us! The Plant Phenome Journal. 2(1).,
  • [40] Burton A.L., Williams M., Lynch J.P. & Brown K.M. (2012), RootScan: Software for high-throughput analysis of root anatomical traits,Plant and soil. 357(1): 189-203.
  • [41] Beres B.L., Hatfield J.L., Kirkegaard J.A., Eigenbrode S.D., Pan W.L., Lollato R.P., Hunt J.R., Strydhorst S., Porker K., Lyon D., Ransom J. & Wiersma J. (2020), Toward a Better Understanding of Genotype × Environment × Management Interactions - A Global Wheat Initiative Agronomic Research Strategy,Frontiers in Plant Science. 11(828).
  • [42] Behjati S. & Tarpey P.S. (2013), What is next generation sequencing?,Archives of Disease in Childhood: Education & Practice. 98(6): 236-238.
  • [43] Araus J.L., Kefauver S.C., Zaman-Allah M., Olsen M.S. & Cairns J.E. (2018), Translating highthroughput phenotyping into genetic gain,Trends in Plant Science. 23(5): 451-466.
  • [44] Araus J.L. & Cairns J.E. (2014), Field high-throughput phenotyping: the new crop breeding frontier,Trends in Plant Science. 19(1): 52-61.
  • [45] Al-Tam F., Adam H., Anjos A.d., Lorieux M., Larmande P., Ghesquière A., Jouannic S. & Shahbazkia H. R. (2013), P-TRAP: a Panicle Trait Phenotyping tool. BMC Plant Biology. 13(1): 122.,